Publications by authors named "Gabriela Stiufiuc"

Apoptosis, the most extensively studied type of cell death, is known to play a crucial role in numerous processes such as elimination of unwanted cells or cellular debris, growth, control of the immune system, and prevention of malignancies. Defective regulation of apoptosis can trigger various diseases and disorders including cancer, neurological conditions, autoimmune diseases and developmental disorders. Knowing the nuances of the cell death type induced by a compound can help decipher which therapy is more effective for specific diseases.

View Article and Find Full Text PDF

Raman spectroscopy recently proved a tremendous capacity to identify disease-specific markers in various (bio)samples being a non-invasive, rapid, and reliable method for cancer detection. In this study, we first aimed to record vibrational spectra of salivary exosomes isolated from oral and oropharyngeal squamous cell carcinoma patients and healthy controls using surface enhancement Raman spectroscopy (SERS). Then, we assessed this method's capacity to discriminate between malignant and non-malignant samples by means of principal component-linear discriminant analysis (PC-LDA) and we used area under the receiver operating characteristics with illustration as the area under the curve to measure the power of salivary exosomes SERS spectra analysis to identify cancer presence.

View Article and Find Full Text PDF

DNA methylation is a crucial epigenetic hallmark of cancer development but the experimental methods able to prove nanoscale modifications are very scarce. Over time, Raman and its counterpart, surface-enhanced Raman scattering (SERS), became one of the most promising techniques capable to investigate nanoscale modifications of DNA bases. In our study, we employed Raman/SERS to highlight the differences between normal and leukemia DNA samples and to evaluate the effects of a 5-azacytidine treatment on leukemia cells.

View Article and Find Full Text PDF

Sorafenib is a multikinase inhibitor that has received increasing attention due to its high efficacy in hepatocellular carcinoma treatment. However, its poor pharmacokinetic properties (limited water solubility, rapid elimination, and metabolism) still represent major bottlenecks that need to be overcome in order to improve Sorafenib's clinical application. In this paper, we propose a nanotechnology-based hybrid formulation that has the potential to overcome these challenges: sorafenib-loaded nanoliposomes.

View Article and Find Full Text PDF

We report a very simple, rapid and reproducible method for the fabrication of anisotropic silver nanostars (AgNS) that can be successfully used as highly efficient SERS substrates for different bioanalytes, even in the case of a near-infra-red (NIR) excitation laser. The nanostars have been synthesized using the chemical reduction of Ag ions by trisodium citrate. This is the first research reporting the synthesis of AgNS using only trisodium citrate as a reducing and stabilizing agent.

View Article and Find Full Text PDF

It is possible to obtain diagnostically relevant data on the changes in biochemical elements brought on by cancer via the use of multivariate analysis of vibrational spectra recorded on biological fluids. Prostate cancer and control groups included in this research generated almost similar SERS spectra, which means that the values of peak intensities present in SERS spectra can only give unspecific and limited information for distinguishing between the two groups. Our diagnostic algorithm for prostate cancer (PCa) differentiation was built using principal component analysis and linear discriminant analysis (PCA-LDA) analysis of spectral data, which has been widely used in spectral data management in many studies and has shown promising results so far.

View Article and Find Full Text PDF

Chiral separation is an important issue for the pharmaceutical industry. Over the years, several separation methods have been developed, mainly based on chromatography. Their working principle is based on the formation of transient diastereoisomers, but the very subtle nanoscale interactions responsible for separation are not always understood.

View Article and Find Full Text PDF

Background: Cytochrome c (Cyt c) is a key biomarker for early apoptosis, and many methods were designed to detect its release from mitochondria. For a proper evaluation of these programed cell death mechanisms, fluorescent nanoparticles are excellent candidates due to their valuable optical properties. Among all classes of nanoparticles developed thus far, carbon-based quantum dots bring qualitative and efficient imaging strategies for biomedical applications as a consequence of their biocompatibility and low cytotoxicity.

View Article and Find Full Text PDF

Surface enhanced Raman spectroscopy (SERS) represents a promising technique in providing specific molecular information that could have a major impact in biomedical applications, such as early cancer detection. SERS requires the presence of a suitable plasmonic substrate that can generate enhanced and reproducible diagnostic relevant spectra. In this paper, we propose a new approach for the synthesis of such a substrate, by using concentrated silver nanoparticles purified using the Tangential Flow Filtration method.

View Article and Find Full Text PDF

We report the synthesis of magnetite nanoparticles (IOMNPs) using the polyol method performed at elevated temperature (300 °C) and high pressure. The ferromagnetic polyhedral IOMNPs exhibited high saturation magnetizations at room temperature (83 emu/g) and a maximum specific absorption rate (SAR) of 2400 W/g in water. The uniform dispersion of IOMNPs in solid matrix led to a monotonous increase of SAR maximum (3600 W/g) as the concentration decreased.

View Article and Find Full Text PDF

By carefully controlling the electrostatic interactions between cationic liposomes, which already incorporate magnetic nanoparticles in the bilayers, and anionic gold nanoparticles, a new class of versatile multifunctional nanohybrids (plasmonic magneto-liposomes) that could have a major impact in drug delivery and controlled release applications has been synthesized. The experimental results confirmed the successful synthesis of hydrophobic superparamagnetic iron oxide nanoparticles (SPIONs) and polyethylene glycol functionalized (PEGylated) gold nanoparticles (AuNPs). The SPIONs were incorporated in the liposomal lipidic bilayers, thus promoting the formation of cationic magnetoliposomes.

View Article and Find Full Text PDF

Biological effects of low-dose ionizing radiation (IR) have been unclear until now. Saliva, because of the ease of collection, could be valuable in studying low-dose IR effects by means of surface-enhanced Raman spectroscopy (SERS). The objective of our study was to compare the salivary SER spectra recorded before and after low-dose IR exposure in the case of pediatric patients (PP).

View Article and Find Full Text PDF

Purpose: The leaves and flowering stem of contain essential oils, flavonoids, phenolic acids and anthocyanins. We propose a new, simple, one-pot, extract (OVE) mediated green synthesis method of biocompatible gold nanoparticles (AuNPs) possessing improved antioxidant, antimicrobial and plasmonic properties.

Materials And Methods: Different concentrations of OVEs were used to reduce gold ions and to synthetize biocompatible spherical AuNPs.

View Article and Find Full Text PDF

Iron oxide magnetic nanoparticles (IOMNPs) have been successfully synthesized by means of solvothermal reduction method employing polyethylene glycol (PEG200) as a solvent. The as-synthesized IOMNPs are poly-dispersed, highly crystalline, and exhibit a cubic shape. The size of IOMNPs is strongly dependent on the reaction time and the ration between the amount of magnetic precursor and PEG200 used in the synthesis method.

View Article and Find Full Text PDF

The nanoparticles mediated enantioselective recognition of propranolol enantiomers through native cyclodextrin complexation has been investigated by using surface-enhanced Raman spectroscopy (SERS). The highly efficient chiral recognition mechanism is based on a synergistic interaction between spherical noble metal nanoparticles, propranolol enantiomers and native cyclodextrins (CDs). Amongst the native cyclodextrins, β-CD has the highest chiral recognition ability for propranolol enantiomers, due to its specific shape and cavity size, thus producing the largest difference between the recorded SERS spectra of the two hosted enantiomers.

View Article and Find Full Text PDF

The multifunctional nanoobjects that can be controlled, manipulated and triggered using external stimuli represent very promising candidates for nanoscale therapeutic and diagnostic applications. In this study we report the successful synthesis and characterization of a new class of very stable multifunctional nanoobjects, containing cationic liposomes decorated with PEGylated gold nanoparticles (PEGAuNPs). The multifunctional hybrid nanoobjects (mHyNp) were prepared by taking advantage of the electrostatic interactions between small unilamelar cationic liposomes and negatively charged gold nanoparticles.

View Article and Find Full Text PDF

We report a fast, one-step, facile, and green preparation method that yields very stable and biocompatible silver colloids that are highly active as surface-enhanced Raman spectroscopy (SERS) platforms that has a possible application in biomedicine. Reduction of silver nitrate has been carried out using polyethylene glycol (PEG) which acts as both reducing agent and stabilizer. It turned out that the -OH groups provided by the addition of NaOH represent a key element in the successful synthesis of PEG-coated silver nanoparticles (AgNPs).

View Article and Find Full Text PDF