Publications by authors named "Gabriela S Dveksler"

Article Synopsis
  • - The SARS-CoV-2 pandemic posed significant risks to pregnant women and newborns, highlighting the importance of the maternal immune system in managing infections while supporting fetal growth.
  • - Galectins, proteins that play a role in immune regulation, are essential for successful pregnancies, with recent studies indicating their involvement in the immune response to SARS-CoV-2 infection.
  • - In the study, maternal levels of galectin-1 increased with SARS-CoV-2 infection, while pregnancy-specific glycoprotein 1 levels rose only during infection; the research reveals a complex relationship between these proteins and pregnancy health during the pandemic.
View Article and Find Full Text PDF

Pregnancy-specific glycoproteins (PSGs) are a family of Ig-like proteins secreted by specialized placental cells. The PSG1 structure is composed of a single Ig variable region-like N-terminal domain and three Ig constant region-like domains termed A1, A2, and B2. Members of the human and murine PSG family have been shown to induce anti-inflammatory cytokines from monocytes and macrophages and to stimulate angiogenesis.

View Article and Find Full Text PDF

The pregnancy-specific glycoproteins (PSGs) are the most abundant trophoblastic proteins in maternal blood during human pregnancy and they appear to be exclusive to species with hemochorial placentation. There are ten protein-coding human PSG genes (PSG1 - PSG9, PSG11) and also multiple PSG genes in non-human primates, rodents and bats. Several studies indicate that PSGs have immunoregulatory, pro-angiogenic, and anti-platelet functions.

View Article and Find Full Text PDF

Pregnancy-specific β1 glycoproteins (PSGs) are the most abundant fetal proteins in the maternal bloodstream in late pregnancy. They are secreted by the syncytiotrophoblast and are detected around day 14 postfertilization. There are 11 human PSG genes, which encode a family of proteins exhibiting significant conservation at the amino acid level.

View Article and Find Full Text PDF

Previous studies suggest that human pregnancy specific beta-1-glycoproteins (PSGs) play immunomodulatory roles during pregnancy; however, other possible functions of PSGs have yet to be explored. We have observed that PSGs induce transforming growth factor beta 1 (TGFB1), which among its other diverse functions inhibits T-cell function and has proangiogenic properties. The present study investigates a potential role for PSG1, the most abundant PSG in maternal serum, as a possible inducer of proangiogenic growth factors known to play an important role in establishment of the vasculature at the maternal-fetal interface.

View Article and Find Full Text PDF

Haemochorial placentation is a unique physiological process in which the fetal trophoblast cells remodel the maternal decidual spiral arteries to establish the fetoplacental blood supply. Pregnancy-specific glycoproteins (PSGs) are members of the carcinoembryonic antigen family. PSGs are produced by the placenta of rodents and primates and are secreted into the bloodstream.

View Article and Find Full Text PDF

Problem: Murine pregnancy-specific glycoproteins (PSGs) are encoded by 17 different genes. Different family members have different expression levels at different stages of embryonic development. It is currently unknown whether all members of this family of placentally secreted proteins have the same function and bind to the same receptor.

View Article and Find Full Text PDF

The capacity of the pregnancy state to regulate T-cell function is well documented. A consequence of this regulation is that many T-cell mediated autoimmune disorders, including multiple sclerosis (MS) are suppressed during pregnancy. The suppression of MS during pregnancy is more potent than the currently available treatments for this disease.

View Article and Find Full Text PDF

Pregnancy-specific glycoproteins (PSGs) are a family of secreted proteins produced by the placenta, which are believed to have a critical role in pregnancy success. Treatment of monocytes with three members of the human PSGs induces interleukin (IL)-10, IL-6, and transforming growth factor-beta(1) (TGF-beta(1)) secretion. To determine whether human and murine PSGs have similar functions and use the same receptor, we treated wild-type and CD9-deficient macrophages with murine PSG17N and human PSG1 and -11.

View Article and Find Full Text PDF

The function currently attributed to tetraspanins is to organize molecular complexes in the plasma membrane by using multiple cis-interactions. Additionally, the tetraspanin CD9 may be a receptor that binds the soluble ligand PSG17, a member of the immunoglobulin superfamily (IgSF)/CEA subfamily. However, previous data are also consistent with the PSG17 receptor being a CD9 cis-associated protein.

View Article and Find Full Text PDF

Pregnancy-specific glycoproteins (PSGs) are a family of highly similar secreted proteins produced by the placenta. PSG homologs have been identified in primates and rodents. Members of the human and murine PSG family induce secretion of antiinflammatory cytokines in mononuclear phagocytes.

View Article and Find Full Text PDF