Publications by authors named "Gabriela Rodrigues-Luiz"

Microgliosis plays a critical role in diet-induced hypothalamic inflammation. A few hours after a high-fat diet (HFD), hypothalamic microglia shift to an inflammatory phenotype, and prolonged fat consumption leads to the recruitment of bone marrow-derived cells to the hypothalamus. However, the transcriptional signatures and functions of these cells remain unclear.

View Article and Find Full Text PDF

Elucidating mechanisms of T cell development can guide in vitro T cell differentiation from induced pluripotent stem cells (iPSCs) and facilitate off-the-shelf T cell-based immunotherapies. Using a stroma-free human iPSC-T cell differentiation platform, we screened for epigenetic modulators that influence T cell specification and identified the H3K9-directed histone methyltransferases G9a/GLP as repressors of T cell fate. We show that G9a/GLP inhibition during specific time windows of differentiation of hematopoietic stem and progenitor cells (HSPCs) skews cell fates toward lymphoid lineages.

View Article and Find Full Text PDF

Leishmaniasis is a diverse group of clinical diseases caused by protozoan parasites of the Leishmania genus. Species-specific identification of Leishmania spp. is challenging due to the high number of different pathogenic species that sometimes co-circulate in the same foci, hampering efforts to effectively control the disease.

View Article and Find Full Text PDF

One of the fundamental features that make viruses intracellular parasites is the necessity to use cellular translational machinery. Hence, this is a crucial checkpoint for controlling infections. Here, we show that dengue and Zika viruses, responsible for nearly 400 million infections every year worldwide, explore such control for optimal replication.

View Article and Find Full Text PDF
Article Synopsis
  • Repetitive elements in complex eukaryotic genomes, like that of Trypanosoma cruzi (the Chagas disease parasite), lead to fragmented assembly and underestimate gene variability, particularly in multigene families responsible for host interactions.
  • * Our new read-based approach estimates the variability and copy number of key multigene families (MASP, TcMUC, and Trans-Sialidase) across multiple parasite strains, revealing distinct patterns of variation and higher variability in hybrid strains.
  • * The findings suggest focusing on TS antigens could enhance diagnosis and vaccine design for Chagas disease, and the methodology is adaptable for studying multicopy genes in other organisms, enabling better insights into complex genomes.
View Article and Find Full Text PDF

Genomic and epidemiological surveillance are paramount for the discovery of new viruses with the potential to cross species barriers. Here, we present a new member of the genus found in and mosquitoes, tentatively named Pirahy virus (PIRAV). PIRAV was isolated from mosquito pools collected in a rural area of Piraí do Sul, South Brazil.

View Article and Find Full Text PDF

Trematodes have complex life cycles with multiple hosts. Biomphalaria snails commonly act as the first intermediate hosts of several species that can affect human and animal health. The specific identification of larval trematodes found in snails is difficult and limited, since the taxonomy of these flukes is based on morphological traits of the adults found in vertebrates.

View Article and Find Full Text PDF

Monocyte counts are increased during human tuberculosis (TB) but it has not been determined whether () directly regulates myeloid commitment. We demonstrated that exposure to directs primary human CD34 cells to differentiate into monocytes/macrophages. In vitro myeloid conversion did not require type I or type II IFN signaling.

View Article and Find Full Text PDF

Tissue-resident macrophages are the most abundant immune cell population in healthy adipose tissue. Adipose tissue macrophages (ATMs) change during metabolic stress and are thought to contribute to metabolic syndrome. Here, we studied ATM subpopulations in steady state and in response to nutritional and infectious challenges.

View Article and Find Full Text PDF

Background: Trypanosoma cruzi, the etiologic agent of Chagas disease, is currently divided into six discrete typing units (DTUs), named TcI-TcVI. TcII is among the major DTUs enrolled in human infections in South America southern cone, where it is associated with severe cardiac and digestive symptoms. Despite the importance of TcII in Chagas disease epidemiology and pathology, so far, no genome-wide comparisons of the mitochondrial and nuclear genomes of TcII field isolates have been performed to track the variability and evolution of this DTU in endemic regions.

View Article and Find Full Text PDF

While diseases caused by nematodes remains a considerable drawback for the livestock, agriculture and public health, anthelmintics drug resistance has been observed over the past years and is a major concern for parasite control. Ivermectin, initially considered as a highly potent drug, currently presents a reduced anti-helminthic efficacy, which is influenced by expression of several ATP-binding cassette transporters (ABC), among them the P-glycoproteins (Pgps). Here we present some evidences of Pgps dominance during Ivermectin resistance/susceptibility using Pgps double silencing in C.

View Article and Find Full Text PDF

Trypanosoma cruzi, the protozoan that causes Chagas disease, has a complex life cycle involving several morphologically and biochemically distinct stages that establish intricate interactions with various insect and mammalian hosts. It has also a heterogeneous population structure comprising strains with distinct properties such as virulence, sensitivity to drugs, antigenic profile and tissue tropism. We present a comparative transcriptome analysis of two cloned T.

View Article and Find Full Text PDF

Background: Molecular genetic markers are one of the most informative and widely used genome features in clinical and environmental diagnostic studies. A polymerase chain reaction (PCR)-based molecular marker is very attractive because it is suitable to high throughput automation and confers high specificity. However, the design of taxon-specific primers may be difficult and time consuming due to the need to identify appropriate genomic regions for annealing primers and to evaluate primer specificity.

View Article and Find Full Text PDF

Background: The Leishmania (Viannia) braziliensis complex is responsible for most cases of New World tegumentary leishmaniasis. This complex includes two closely related species but with different geographic distribution and disease phenotypes, L. (V.

View Article and Find Full Text PDF

Background: Trypanosoma cruzi, the etiologic agent of Chagas disease, is currently divided into six discrete typing units (DTUs), named TcI-TcVI. CL Brener, the reference strain of the T. cruzi genome project, is a hybrid with a genome assembled into 41 putative chromosomes.

View Article and Find Full Text PDF

Background: Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T.

View Article and Find Full Text PDF

Background: The factors influencing variation in the clinical forms of Chagas disease have not been elucidated; however, it is likely that the genetics of both the host and the parasite are involved. Several studies have attempted to correlate the T. cruzi strains involved in infection with the clinical forms of the disease by using hemoculture and/or PCR-based genotyping of parasites from infected human tissues.

View Article and Find Full Text PDF

Endosymbiont-bearing trypanosomatids have been considered excellent models for the study of cell evolution because the host protozoan co-evolves with an intracellular bacterium in a mutualistic relationship. Such protozoa inhabit a single invertebrate host during their entire life cycle and exhibit special characteristics that group them in a particular phylogenetic cluster of the Trypanosomatidae family, thus classified as monoxenics. In an effort to better understand such symbiotic association, we used DNA pyrosequencing and a reference-guided assembly to generate reads that predicted 16,960 and 12,162 open reading frames (ORFs) in two symbiont-bearing trypanosomatids, Angomonas deanei (previously named as Crithidia deanei) and Strigomonas culicis (first known as Blastocrithidia culicis), respectively.

View Article and Find Full Text PDF

Background: Trypanosoma cruzi is the etiological agent of Chagas disease, a debilitating illness that affects millions of people in the Americas. A major finding of the T. cruzi genome project was the discovery of a novel multigene family composed of approximately 1,300 genes that encode mucin-associated surface proteins (MASPs).

View Article and Find Full Text PDF

The protozoan parasite Trypanosoma cruzi is the etiologic agent of Chagas disease, a highly debilitating human pathology that affects millions of people in the Americas. The sequencing of this parasite's genome reveals that trans-sialidase/trans-sialidase-like (TcS), a polymorphic protein family known to be involved in several aspects of T. cruzi biology, is the largest T.

View Article and Find Full Text PDF