An innovative integrated paper-based microdevice was developed for protein separation by isoelectric focusing (IEF), allowing for robust design thanks to a 3D-printed holder integrating separation channel, reservoirs, and electrodes. To reach robustness and precision, the optimization focused on the holder geometry, the paper nature, the reservoir design, the IEF medium, and various focusing parameters. A well-established and stable pH gradient was obtained on a glass-fiber paper substrate with simple sponge reservoirs, and the integration of the electrodes in the holder led to a straightforward system.
View Article and Find Full Text PDFThe most common COVID-19 testing relies on the use of nasopharyngeal swabs. However, this sampling step is very uncomfortable and is one of the biggest challenges regarding population testing. In the present study, the use of saliva as an alternative sample for COVID-19 diagnosis was investigated.
View Article and Find Full Text PDFThis study presents the development of a polyester microplate for detecting the S-protein of the SARS-CoV-2 virus in saliva and nasopharyngeal swab samples using direct enzyme-linked immunosorbent assay (ELISA) technology. The polyester microplate was designed to contain 96 zones with a 3 mm diameter each, and a volume of 2-3 μL. The experimental conditions including reagent concentration and reaction time were optimized.
View Article and Find Full Text PDFAnalyst
December 2022
Two lineages (BA.1 and BA.2) of the Omicron variant are the main ones responsible for the recent COVID-19 pandemic waves worldwide.
View Article and Find Full Text PDFSince 2020, developed countries have rapidly shared both publicly and academically relevant wastewater surveillance information. Data on SARS-CoV-2 circulation is pivotal for guiding public health policies and improving the COVID-19 pandemic response. Conversely, low- and middle-income countries, such as Latin America and the Caribbean, showed timid activities in the Wastewater-Based Epidemiology (WBE) context.
View Article and Find Full Text PDFDespite the advance of vaccination worldwide, epidemic waves caused by more transmissible and immune evasive genetic variants of SARS-CoV-2 have sustained the ongoing pandemic of COVID-19. Monitoring such variants is expensive, as it usually relies on whole-genome sequencing methods. Therefore, it is necessary to develop alternatives that could help identify samples from specific variants.
View Article and Find Full Text PDFAnal Methods
July 2021
SARS-CoV-2 currently represents a serious global public health problem. Non-pharmaceutical intervention measures (NPIs) have been widely adopted, and the testing strategy since the beginning of the infection is the most effective tool for tracking, isolating, and minimizing transmission. The high operating costs and the need for sophisticated instrumentation related to gold standard diagnostic for COVID-19, Reverse Transcription quantitative Polymerase Chain Reaction (RT-qPCR), have highlighted the urgency and importance of developing and applying new diagnostic techniques, especially in places with scarce resources.
View Article and Find Full Text PDFAnalyst
February 2021
Infection caused by the new coronavirus (SARS-CoV-2) has become a serious worldwide public health problem, and one of the most important strategies for its control is mass testing. Loop-mediated isothermal amplification (LAMP) has emerged as an important alternative to simplify the diagnostics of infectious diseases. In addition, an advantage of LAMP is that it allows for easy reading of the final result through visual detection.
View Article and Find Full Text PDFZika virus (ZIKV) is a current threat to global health. In most of cases, ZIKV infection has no symptoms; however in some cases, ZIKV can cause paralysis (Guillain-Barré syndrome), and in pregnant women, it can cause birth defects in infants. Rapid and accurate diagnosis can help improve disease control as well as being vital to prenatal care for women living in endemic areas.
View Article and Find Full Text PDFIn recent years, isothermal DNA amplification methods have emerged as an alternative in molecular diagnostics due to its ease of operation. The purpose of using isothermal amplification is to simplify the diagnostics work by i) eliminating heating cycles, ii) reducing equipment costs, and iii) providing rapid and accurate results in laboratories with limited resources. Here we show a simple and fast method for E.
View Article and Find Full Text PDFInfrared (IR)-mediated thermal cycling system, a method proven to be a effective for sub-μL scale polymerase chain reaction (PCR) on microchips, has been integrated with DNA extraction and separation on a glass microchip in a fully integrated micro Total Analysis System by Easley et al., in 2006. IR-PCR has been demonstrated on both glass and PMMA microdevices where the fabrication (bonding) is not trivial.
View Article and Find Full Text PDFWe describe a technique for fabricating microfluidic devices with complex multilayer architectures using a laser printer, a CO2 laser cutter, an office laminator and common overhead transparencies as a printable substrate via a laser print, cut and laminate (PCL) methodology. The printer toner serves three functions: (i) it defines the microfluidic architecture, which is printed on the overhead transparencies; (ii) it acts as the adhesive agent for the bonding of multiple transparency layers; and (iii) it provides, in its unmodified state, printable, hydrophobic 'valves' for fluidic flow control. By using common graphics software, e.
View Article and Find Full Text PDFMicrochip electrophoresis has become a powerful tool for DNA separation, offering all of the advantages typically associated with miniaturized techniques: high speed, high resolution, ease of automation, and great versatility for both routine and research applications. Various substrate materials have been used to produce microchips for DNA separations, including conventional (glass, silicon, and quartz) and alternative (polymers) platforms. In this study, we perform DNA separation in a simple and low-cost polyester-toner (PeT)-based electrophoresis microchip.
View Article and Find Full Text PDFA variety of substrates have been used for fabrication of microchips for DNA extraction, PCR amplification, and DNA fragment separation, including the more conventional glass and silicon as well as alternative polymer-based materials. Polyester represents one such polymer, and the laser-printing of toner onto polyester films has been shown to be effective for generating polyester-toner (PeT) microfluidic devices with channel depths on the order of tens of micrometers. Here, we describe a novel and simple process that allows for the production of multilayer, high aspect-ratio PeT microdevices with substantially larger channel depths.
View Article and Find Full Text PDFA novel solid phase extraction technique is described where DNA is bound and eluted from magnetic silica beads in a manner where efficiency is dependent on the magnetic manipulation of the beads and not on the flow of solution through a packed bed. The utility of this technique in the isolation of reasonably pure, PCR-amplifiable DNA from complex samples is shown by isolating DNA from whole human blood, and subsequently amplifying a fragment of the beta-globin gene. By effectively controlling the movement of the solid phase in the presence of a static sample, the issues associated with reproducibly packing a solid phase in a microchannel and maintaining consistent flow rates are eliminated.
View Article and Find Full Text PDF