Publications by authors named "Gabriela Plesa"

Patient-derived tumor organoids have been leveraged for disease modeling and preclinical studies but rarely applied in real time to aid with interpretation of patient treatment responses in clinics. We recently demonstrated early efficacy signals in a first-in-human, phase 1 study of dual-targeting chimeric antigen receptor (CAR)-T cells (EGFR-IL13Rα2 CAR-T cells) in patients with recurrent glioblastoma. Here, we analyzed six sets of patient-derived glioblastoma organoids (GBOs) treated concurrently with the same autologous CAR-T cell products as patients in our phase 1 study.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is a rapidly progressive malignancy without effective therapies for refractory disease. So far, chimeric antigen receptor (CAR) T cell therapy in AML has not recapitulated the efficacy seen in B cell malignancies. Here we report a pilot study of autologous anti-CD123 CAR T cells in 12 adults with relapsed or refractory AML.

View Article and Find Full Text PDF

Recurrent glioblastoma (rGBM) remains a major unmet medical need, with a median overall survival of less than 1 year. Here we report the first six patients with rGBM treated in a phase 1 trial of intrathecally delivered bivalent chimeric antigen receptor (CAR) T cells targeting epidermal growth factor receptor (EGFR) and interleukin-13 receptor alpha 2 (IL13Rα2). The study's primary endpoints were safety and determination of the maximum tolerated dose.

View Article and Find Full Text PDF

The use of lentiviral vectors in cell and gene therapy is steadily increasing, both in commercial and investigational therapies. Although existing data increasingly support the usefulness and safety of clinical-grade lentiviral vectors used in cell manufacturing, comprehensive studies specifically addressing their long-term stability are currently lacking. This is significant considering the high cost of producing and testing GMP-grade vectors, the limited number of production facilities, and lengthy queue for production slots.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T cell therapy targeting CD19 has achieved tremendous success treating B cell malignancies; however, some patients fail to respond due to poor autologous T cell fitness. To improve response rates, we investigated whether disruption of the co-inhibitory receptors CTLA4 or PD-1 could restore CART function. CRISPR-Cas9-mediated deletion of CTLA4 in preclinical models of leukemia and myeloma improved CAR T cell proliferation and anti-tumor efficacy.

View Article and Find Full Text PDF

Purpose: Treatments are limited for metastatic melanoma and metastatic triple-negative breast cancer (mTNBC). This pilot phase I trial (NCT03060356) examined the safety and feasibility of intravenous RNA-electroporated chimeric antigen receptor (CAR) T cells targeting the cell-surface antigen cMET.

Experimental Design: Metastatic melanoma or mTNBC subjects had at least 30% tumor expression of cMET, measurable disease and progression on prior therapy.

View Article and Find Full Text PDF

Multiple clinical studies have treated mesothelin (MSLN)-positive solid tumors by administering MSLN-directed chimeric antigen receptor (CAR) T cells. Although these products are generally safe, efficacy is limited. Therefore, we generated and characterized a potent, fully human anti-MSLN CAR.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T cells demonstrate remarkable success in treating hematological malignancies, but their effectiveness in non-hematopoietic cancers remains limited. This study proposes enhancing CAR T cell function and localization in solid tumors by modifying the epigenome governing tissue-residency adaptation and early memory differentiation. We identify that a key factor in human tissue-resident memory CAR T cell (CAR-T) formation is activation in the presence of the pleotropic cytokine, transforming growth factor β (TGF-β), which enforces a core program of both "stemness" and sustained tissue residency by mediating chromatin remodeling and concurrent transcriptional changes.

View Article and Find Full Text PDF

Unlabelled: Chimeric antigen receptor (CAR) T cell therapy has shown promise in treating hematologic cancers, but resistance is common and efficacy is limited in solid tumors. We found that CAR T cells autonomously propagate epigenetically programmed type I interferon signaling through chronic stimulation, which hampers antitumor function. EGR2 transcriptional regulator knockout not only blocks this type I interferon-mediated inhibitory program but also independently expands early memory CAR T cells with improved efficacy against liquid and solid tumors.

View Article and Find Full Text PDF

Unlabelled: We conducted a phase I clinical trial of anti-BCMA chimeric antigen receptor T cells (CART-BCMA) with or without anti-CD19 CAR T cells (huCART19) in multiple myeloma (MM) patients responding to third- or later-line therapy (phase A, N = 10) or high-risk patients responding to first-line therapy (phase B, N = 20), followed by early lenalidomide or pomalidomide maintenance. We observed no high-grade cytokine release syndrome (CRS) and only one instance of low-grade neurologic toxicity. Among 15 subjects with measurable disease, 10 exhibited partial response (PR) or better; among 26 subjects responding to prior therapy, 9 improved their response category and 4 converted to minimal residual disease (MRD)-negative complete response/stringent complete response.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T cells have not induced meaningful clinical responses in solid tumors. Loss of T cell stemness, poor expansion capacity, and exhaustion during prolonged tumor antigen exposure are major causes of CAR T cell therapeutic resistance. Single-cell RNA-sequencing analysis of CAR T cells from a first-in-human trial in metastatic prostate cancer identified two independently validated cell states associated with antitumor potency or lack of efficacy.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T cells have demonstrated promising efficacy, particularly in hematologic malignancies. One challenge regarding CAR T cells in solid tumors is the immunosuppressive tumor microenvironment (TME), characterized by high levels of multiple inhibitory factors, including transforming growth factor (TGF)-β. We report results from an in-human phase 1 trial of castration-resistant, prostate cancer-directed CAR T cells armored with a dominant-negative TGF-β receptor (NCT03089203).

View Article and Find Full Text PDF

Chimaeric antigen receptor (CAR) T cells can generate durable clinical responses in B-cell haematologic malignancies. The manufacturing of these T cells typically involves their activation, followed by viral transduction and expansion ex vivo for at least 6 days. However, the activation and expansion of CAR T cells leads to their progressive differentiation and the associated loss of anti-leukaemic activity.

View Article and Find Full Text PDF

MazF is an Escherichia coli-derived endoribonuclease that selectively cleaves ACA sequences of mRNA prevalent in HIV. We administered a single infusion of autologous CD4 T lymphocytes modified to express a Tat-dependent MazF transgene to 10 HIV-infected individuals (six remaining on antiretroviral therapy [ART]; four undergoing treatment interruption post-infusion) in order to provide a population of HIV-resistant immune cells. In participants who remained on ART, increases in CD4 and CD8 T cell counts of ~200 cells/mm each occurred within 2 weeks of infusion and persisted for at least 6 months.

View Article and Find Full Text PDF

B cells infiltrate pancreatic ductal adenocarcinoma (PDAC) and in preclinical cancer models, can suppress T cell immunosurveillance in cancer. Here, we conducted a pilot study to assess the safety and feasibility of administering lentiviral-transduced chimeric antigen receptor (CAR)-modified autologous T cells redirected against mesothelin to target tumor cells along with CART cells redirected against CD19 to deplete B cells. Both CARs contained 4-1BB and CD3ζ signaling domains.

View Article and Find Full Text PDF

CRISPR-Cas9 gene editing provides a powerful tool to enhance the natural ability of human T cells to fight cancer. We report a first-in-human phase 1 clinical trial to test the safety and feasibility of multiplex CRISPR-Cas9 editing to engineer T cells in three patients with refractory cancer. Two genes encoding the endogenous T cell receptor (TCR) chains, TCRα () and TCRβ (), were deleted in T cells to reduce TCR mispairing and to enhance the expression of a synthetic, cancer-specific TCR transgene (NY-ESO-1).

View Article and Find Full Text PDF

This phase I study investigated the safety and activity of lentiviral-transduced chimeric antigen receptor (CAR)-modified autologous T cells redirected against mesothelin (CART-meso) in patients with malignant pleural mesothelioma, ovarian carcinoma, and pancreatic ductal adenocarcinoma. Fifteen patients with chemotherapy-refractory cancer (n = 5 per indication) were treated with a single CART-meso cell infusion. CART-meso cells were engineered by lentiviral transduction with a construct composed of the anti-mesothelin single-chain variable fragment derived from the mouse monoclonal antibody SS1 fused to intracellular signaling domains of 4-1BB and CD3zeta.

View Article and Find Full Text PDF

Background: Chimeric antigen receptor (CAR) T cells are a promising therapy for hematologic malignancies. B-cell maturation antigen (BCMA) is a rational target in multiple myeloma (MM).

Methods: We conducted a phase I study of autologous T cells lentivirally-transduced with a fully-human, BCMA-specific CAR containing CD3ζ and 4-1BB signaling domains (CART-BCMA), in subjects with relapsed/refractory MM.

View Article and Find Full Text PDF

The advent of engineered T cells as a form of immunotherapy marks the beginning of a new era in medicine, providing a transformative way to combat complex diseases such as cancer. Following FDA approval of CAR T cells directed against the CD19 protein for the treatment of acute lymphoblastic leukemia and diffuse large B cell lymphoma, CAR T cells are poised to enter mainstream oncology. Despite this success, a number of patients are unable to receive this therapy due to inadequate T cell numbers or rapid disease progression.

View Article and Find Full Text PDF

EGFRvIII targeted chimeric antigen receptor T (CAR-T) cell therapy has recently been reported for treating glioblastomas (GBMs); however, physiology-based MRI parameters have not been evaluated in this setting. Ten patients underwent multiparametric MRI at baseline, 1, 2 and 3 months after CAR-T therapy. Logistic regression model derived progression probabilities (PP) using imaging parameters were used to assess treatment response.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is resistant to T-cell-mediated immunotherapy. We engineered T cells to transiently express a messenger RNA encoding a chimeric antigen receptor (CAR) specific for mesothelin, a protein that is overexpressed by PDAC cells. We performed a phase I study to evaluate the safety and efficacy of adoptive cell therapy with autologous mesothelin-specific CAR T cells (CARTmeso cells) in 6 patients with chemotherapy-refractory metastatic PDAC.

View Article and Find Full Text PDF

Replication-competent retrovirus/lentivirus (RCR/L) and insertional oncogenesis are potential safety risks with integrating viruses in gene-modified cell therapies. As such, the Food and Drug Administration guidances outline RCR/L-monitoring methods throughout the entire gene therapy treatment cycle. We present data for 17 vector lots, 375 manufactured T cell products, and 308 patients post-infusion across both HIV and oncology indications, showing no evidence of RCR/L.

View Article and Find Full Text PDF

Chimeric antigen receptors (CAR) are synthetic molecules that provide new specificities to T cells. Although successful in treatment of hematologic malignancies, CAR T cells are ineffective for solid tumors to date. We found that the cell-surface molecule c-Met was expressed in ∼50% of breast tumors, prompting the construction of a CAR T cell specific for c-Met, which halted tumor growth in immune-incompetent mice with tumor xenografts.

View Article and Find Full Text PDF

One obstacle to the application of immunotherapy to solid malignancies is to overcome the existing tolerance to self-antigens. Vaccine strategies aimed at harnessing endogenous antitumor T cells are limited by the T-cell receptor repertoire, which can be detected within the thymus as central tolerance or rendered nonfunctional by post-thymic mechanisms of peripheral tolerance. Adoptive immunotherapy can overcome these obstacles, since therapeutically effective T cells can be engineered to recognize tumors.

View Article and Find Full Text PDF