Retrotransposons are mobile DNA sequences duplicated via transcription and reverse transcription of an RNA intermediate. Cis-regulatory elements encoded by retrotransposons can also promote the transcription of adjacent genes. Somatic LINE-1 (L1) retrotransposon insertions have been detected in mammalian neurons.
View Article and Find Full Text PDFCholinergic signaling plays a crucial role in the regulation of adult hippocampal neurogenesis; however, the mechanisms by which acetylcholine mediates neurogenic effects are not completely understood. Here, we report the expression of muscarinic acetylcholine receptor subtype M4 (M4 mAChR) on a subpopulation of neural precursor cells (NPCs) in the adult mouse hippocampus, and demonstrate that its pharmacological stimulation promotes their proliferation, thereby enhancing the production of new neurons in vivo. Using a targeted ablation approach, we also show that medial septum (MS) and the diagonal band of Broca (DBB) cholinergic neurons support both the survival and morphological maturation of adult-born neurons in the mouse hippocampus.
View Article and Find Full Text PDFMice harbor ∼2800 intact copies of the retrotransposon Long Interspersed Element 1 (L1). The in vivo retrotransposition capacity of an L1 copy is defined by both its sequence integrity and epigenetic status, including DNA methylation of the monomeric units constituting young mouse L1 promoters. Locus-specific L1 methylation dynamics during development may therefore elucidate and explain spatiotemporal niches of endogenous retrotransposition but remain unresolved.
View Article and Find Full Text PDFThe retrotransposon LINE-1 (L1) is central to the recent evolutionary history of the human genome and continues to drive genetic diversity and germline pathogenesis. However, the spatiotemporal extent and biological significance of somatic L1 activity are poorly defined and are virtually unexplored in other primates. From a single L1 lineage active at the divergence of apes and Old World monkeys, successive L1 subfamilies have emerged in each descendant primate germline.
View Article and Find Full Text PDFMidbrain dopaminergic (mDA) neurons are diverse in their projection targets, effect on behavior, and susceptibility to neurodegeneration. Little is known about the molecular mechanisms establishing this diversity during development. We show that the transcription factor BCL11A is expressed in a subset of mDA neurons in the developing and adult murine brain and in a subpopulation of pluripotent-stem-cell-derived human mDA neurons.
View Article and Find Full Text PDFAge is one of the strongest risk factors for the development of neurodegenerative diseases, the majority of which involve misfolded protein aggregates in the brain. These protein aggregates are thought to drive pathology and are attractive targets for the development of new therapies. However, it is unclear how age influences the onset of pathology and the accompanying molecular response.
View Article and Find Full Text PDFA recent study proposed that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) hijacks the LINE-1 (L1) retrotransposition machinery to integrate into the DNA of infected cells. If confirmed, this finding could have significant clinical implications. Here, we apply deep (>50×) long-read Oxford Nanopore Technologies (ONT) sequencing to HEK293T cells infected with SARS-CoV-2 and do not find the virus integrated into the genome.
View Article and Find Full Text PDFOver the past decade, major discoveries in retrotransposon biology have depicted the neural genome as a dynamic structure during life. In particular, the retrotransposon LINE-1 (L1) has been shown to be transcribed and mobilized in the brain. Retrotransposition in the developing brain, as well as during adult neurogenesis, provides a milieu in which neural diversity can arise.
View Article and Find Full Text PDFMidbrain dopaminergic neurons (MbDNs) modulate cognitive processes, regulate voluntary movement, and encode reward prediction errors and aversive stimuli. While the degeneration of MbDNs underlies the motor defects in Parkinson's disease, imbalances in dopamine levels are associated with neuropsychiatric disorders such as depression, schizophrenia and substance abuse. In recent years, progress has been made in understanding how MbDNs, which constitute a relatively small neuronal population in the brain, can contribute to such diverse functions and dysfunctions.
View Article and Find Full Text PDFSomatic LINE-1 (L1) retrotransposition during neurogenesis is a potential source of genotypic variation among neurons. As a neurogenic niche, the hippocampus supports pronounced L1 activity. However, the basal parameters and biological impact of L1-driven mosaicism remain unclear.
View Article and Find Full Text PDFThe proper functioning of the dopaminergic system requires the coordinated formation of projections extending from dopaminergic neurons in the substantia nigra (SN), ventral tegmental area (VTA) and retrorubral field to a wide array of forebrain targets including the striatum, nucleus accumbens and prefrontal cortex. The mechanisms controlling the assembly of these distinct dopaminergic cell clusters are not well understood. Here, we have investigated in detail the migratory behavior of dopaminergic neurons giving rise to either the SN or the medial VTA using genetic inducible fate mapping, ultramicroscopy, time-lapse imaging, slice culture and analysis of mouse mutants.
View Article and Find Full Text PDFThe mouse is an excellent model organism to study mammalian brain development due to the abundance of molecular and genetic data. However, the developing mouse brain is not suitable for easy manipulation and imaging in vivo since the mouse embryo is inaccessible and opaque. Organotypic slice cultures of embryonic brains are therefore widely used to study murine brain development in vitro.
View Article and Find Full Text PDFBackground: The ventral midbrain contains a diverse array of neurons, including dopaminergic neurons of the ventral tegmental area (VTA) and substantia nigra (SN) and neurons of the red nucleus (RN). Dopaminergic and RN neurons have been shown to arise from ventral mesencephalic precursors that express Sonic Hedgehog (Shh). However, Shh expression, which is initially confined to the mesencephalic ventral midline, expands laterally and is then downregulated in the ventral midline.
View Article and Find Full Text PDFThe mycotoxin deoxynivalenol (DON), a contaminant of certain foods and feeds, is cytotoxic and genotoxic to mammalians cells. Exposure of human embryonic kidney (Hek-293) cells to DON led to a dose- and time-dependent decrease in cell viability, with an IC(50) about 7.6 μM.
View Article and Find Full Text PDF