Publications by authors named "Gabriela N Ledesma"

An efficient and straightforward route toward the isatin-type natural product melosatin A is reported, employing a trisubstituted aniline as a key intermediate. The latter was synthesized in 4 steps and 60% overall yield from eugenol, through its regioselective nitration, sequentially followed by a Williamson methylation, an olefin cross-metathesis with 4-phenyl-1-butene and the simultaneous reduction of olefin and nitro groups. The final step, a Martinet cyclocondensation of the key aniline with diethyl 2-ketomalonate, provided the natural product with 68% yield.

View Article and Find Full Text PDF

A new diMn complex, [MnL(OAc)(HO)](BPh)·3HO (1), obtained with the unsymmetrical NO-ligand HL = 1-[N-(2-pyridylmethyl),N-(2-hydroxybenzyl)amino]-3-[N'-(2-hydroxybenzyl),N'-(benzyl)amino]propan-2-ol, has been prepared and characterized. The unsymmetrical hexadentate ligand L leads to coordination dissymmetry (dissimilar donor atoms) around each Mn ion (NO and NO(solvent), respectively) leaving one labile site on one of the two Mn ions that facilitates interaction of the metal center with HO, as in Mn catalase. 1 is able to catalyze HO disproportionation in acetonitrile, with second-order rate constant k = 23.

View Article and Find Full Text PDF

A mononuclear Mn(III) complex MnL·4H2O (H3L=1-[N-(2-pyridylmethyl),N-(2-hydroxybenzyl)amino]-3-[N'-(2-hydroxybenzyl),N'-(4-methylbenzyl)amino]propan-2-ol) has been prepared and characterized. This complex catalyzes the dismutation of superoxide efficiently, with catalytic rate constant kcat=1.7×10(6)M(-1)s(-1) and IC50 1.

View Article and Find Full Text PDF

Two new tri-Mn(III) complexes of general formula [Mn3L2(μ-OH)(OAc)]ClO4 (H3L = 1-[N-(2-pyridylmethyl),N-(2-hydroxybenzyl)amino]-3-[N'-(2-hydroxybenzyl),N'-(4-X-benzyl)amino]propan-2-ol; 1ClO4, X = Me; 2ClO4, X = H) have been prepared and characterized. X-ray diffraction analysis of 1ClO4 reveals that the complex cation possesses a Mn3(μ-alkoxo)2(μ-hydroxo)(μ-phenoxo)(4+) core, with the three Mn atoms bound to two fully deprotonated N3O3 chelating L(3-), one exogenous acetato ligand, and one hydroxo bridge, the structure of which is retained upon dissolution in acetonitrile or methanol. The three Mn atoms occupy the vertices of a nearly isosceles triangle (Mn1···Mn3 = 3.

View Article and Find Full Text PDF

Electron transfer is the simplest chemical reaction and constitutes the basis of a large variety of biological processes, such as photosynthesis and cellular respiration. Nature has evolved specific proteins and cofactors for these functions. The mechanisms optimizing biological electron transfer have been matter of intense debate, such as the role of the protein milieu between donor and acceptor sites.

View Article and Find Full Text PDF

The electronic properties of Thermus thermophilus Cu(A) in the oxidized form were studied by (1)H and (13)C NMR spectroscopy. All of the (1)H and (13)C resonances from cysteine and imidazole ligands were observed and assigned in a sequence-specific fashion. The detection of net electron spin density on a peptide moiety is attributed to the presence of a H-bond to a coordinating sulfur atom.

View Article and Find Full Text PDF