Biochem Biophys Res Commun
July 2009
Contractile properties differ between skeletal, cardiac and smooth muscles as well as between various skeletal muscle fiber types. This functional diversity is thought to be mainly related to different speeds of myosin head pulling cycles, with the molecular mechanism of force generation being essentially the same. In this study, force-generating attachments of myosin heads were investigated by applying small perturbations of myosin head pulling cycles in stepwise stretch experiments on skeletal muscle fibers of different type.
View Article and Find Full Text PDFSkeletal muscle is composed of specialized fibre types that enable it to fulfil complex and variable functional needs. Muscle fibres of Xenopus laevis, a frog formerly classified as a toad, were the first to be typed based on a combination of physiological, morphological, histochemical and biochemical characteristics. Currently the most widely accepted criterion for muscle fibre typing is the myosin heavy chain (MHC) isoform composition because it is assumed that variations of this protein are the most important contributors to functional diversity.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
February 2006
The differential sensitivity of frog twitch and slow-tonic fibers to Ca(2+) and Sr(2+) suggests that these two fiber types express different troponin C (TnC) isoforms. To date, only one TnC isoform from anurans (resembling the mammalian fast-twitch isoform) has been isolated and characterized. In this study, we examined the possibility that anuran striated muscle contains more than one TnC isoform.
View Article and Find Full Text PDFSingle fibers of rat diaphragm containing different naturally occurring combinations of myofibrillar protein isoforms were used to evaluate the contribution of troponin C (TnC) isoforms to fiber type-related differences with respect to sensitivity to Sr(2+) of the contractile system. Mechanically skinned fibers were studied for their isometric force vs. Sr(2+) concentration ([Sr(2+)]) relationships and then analyzed electrophoretically for myofibrillar protein isoform composition.
View Article and Find Full Text PDFJ Muscle Res Cell Motil
November 2004
To date, there has been no report of rat TnC purification, despite the rat being an animal commonly used in physiological studies of mammalian muscle. In this study we isolated the fast and slow Troponin C isoforms from rat extensor digitorum longus (23 microg TnC/g wet weight) and soleus (17.6 microg TnC/g wet weight) muscles respectively.
View Article and Find Full Text PDFIn the present study, we investigated the possibility that MHC (myosin heavy chain) and TnC (troponin C) isoforms exist in specific combinations in rat-skeletal-muscle fibres. Single fibres (numbering 245) from soleus (predominantly slow-twitch) and sternomastoid (predominantly fast-twitch) muscles of adult rats were analysed for MHC and TnC isoform composition, using alanine-SDS/PAGE for separating MHC isoforms, and a novel method (based on the previously reported influence of Ca2+ on the mobility of Ca2+-binding proteins in SDS gels) for unequivocal identification of TnC isoforms in single-fibre segments. In this study, all fibres that contained only one MHC isoform (slow or fast) contained only the matching TnC isoform and all fibres that contained multiple fast MHC isoforms contained only the fast TnC isoform.
View Article and Find Full Text PDFSegments of single fibres from the rectus abdominis (RA) muscles of adult and juvenile cane toads (Bufo marinus) were examined for myosin heavy chain (mHC) isoform expression and Ca2+-stimulated MgATPase activity. mHC isoform analyses were carried out using the recently developed alanine-SDS-PAGE method, which separates one tonic (BmHCT) and three twitch (BmHC1, BmHC2, BmHC3) mHC isoforms in toad skeletal muscle. Ca2+-stimulated MgATPase activity was measured by spectrophotometric determination of Pi, under conditions in which the ATPase associated with the sarcoplasmic reticulum (SR ATPase) was suppressed by feedback inhibition.
View Article and Find Full Text PDF