To investigate the genetic basis of type 2 diabetes (T2D) to high resolution, the GoT2D and T2D-GENES consortia catalogued variation from whole-genome sequencing of 2,657 European individuals and exome sequencing of 12,940 individuals of multiple ancestries. Over 27M SNPs, indels, and structural variants were identified, including 99% of low-frequency (minor allele frequency [MAF] 0.1-5%) non-coding variants in the whole-genome sequenced individuals and 99.
View Article and Find Full Text PDFThe genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of the heritability of this disease. Here, to test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole-genome sequencing in 2,657 European individuals with and without diabetes, and exome sequencing in 12,940 individuals from five ancestry groups.
View Article and Find Full Text PDFBackground: Osteoporosis is a common and debilitating bone disease that is characterised by a low bone mineral density (BMD), a highly heritable trait. Genome-wide association studies (GWAS) have proven to be very successful in identifying common genetic variants associated with BMD adjusted for age, gender and weight, however a large portion of the genetic variance for this trait remains unexplained. There is evidence to suggest significant genetic correlation between body size traits and BMD.
View Article and Find Full Text PDFGenetic factors contribute strongly to sex hormone levels, yet knowledge of the regulatory mechanisms remains incomplete. Genome-wide association studies (GWAS) have identified only a small number of loci associated with sex hormone levels, with several reproductive hormones yet to be assessed. The aim of the study was to identify novel genetic variants contributing to the regulation of sex hormones.
View Article and Find Full Text PDFNormal thyroid function is essential for health, but its genetic architecture remains poorly understood. Here, for the heritable thyroid traits thyrotropin (TSH) and free thyroxine (FT4), we analyse whole-genome sequence data from the UK10K project (N=2,287). Using additional whole-genome sequence and deeply imputed data sets, we report meta-analysis results for common variants (MAF≥1%) associated with TSH and FT4 (N=16,335).
View Article and Find Full Text PDFGenome wide association studies (GWAS) for fasting glucose (FG) and insulin (FI) have identified common variant signals which explain 4.8% and 1.2% of trait variance, respectively.
View Article and Find Full Text PDFAutoimmune thyroid diseases (AITD) are common, affecting 2-5% of the general population. Individuals with positive thyroid peroxidase antibodies (TPOAbs) have an increased risk of autoimmune hypothyroidism (Hashimoto's thyroiditis), as well as autoimmune hyperthyroidism (Graves' disease). As the possible causative genes of TPOAbs and AITD remain largely unknown, we performed GWAS meta-analyses in 18,297 individuals for TPOAb-positivity (1769 TPOAb-positives and 16,528 TPOAb-negatives) and in 12,353 individuals for TPOAb serum levels, with replication in 8,990 individuals.
View Article and Find Full Text PDFIntroduction: Genetic studies of osteoporosis have commonly examined SNPs in candidate genes or whole genome analyses, but insertions and deletions of DNA, collectively called copy number variations (CNVs), also comprise a large amount of the genetic variability between individuals. Previously, SNPs in the APC gene have been strongly associated with femoral neck and lumbar spine volumetric bone mineral density in older men. In addition, familial adenomatous polyposis patients carrying heterozygous mutations in the APC gene have been shown to have significantly higher mean bone mineral density than age- and sex-matched controls suggesting the importance of this gene in regulating bone mineral density.
View Article and Find Full Text PDFThe integrated analysis of genotypic and expression data for association with complex traits could identify novel genetic pathways involved in complex traits. We profiled 19,573 expression probes in Epstein-Barr virus-transformed lymphoblastoid cell lines (LCLs) from 299 twins and correlated these with 44 quantitative traits (QTs). For 939 expressed probes correlating with more than one QT, we investigated the presence of eQTL associations in three datasets of 57 CEU HapMap founders and 86 unrelated twins.
View Article and Find Full Text PDFThyroid hormones are key regulators of cellular growth, development, and metabolism, and thyroid disorders are a common cause of ill health in the community. Circulating concentrations of thyrotropin (TSH), thyroxine (T4) and triiodothyronine (T3) have a strong heritable component and are thought to be under polygenic control, but the genes responsible are mostly unknown. In order to identify genetic loci associated with these metabolic phenotypes, we performed a genome-wide association study of 2,120,505 SNPs in 2014 female twins from the TwinsUK study and found a significant association between rs10917469 on chromosome 1p36.
View Article and Find Full Text PDFPrevious data from our group indicate that BMD is linked to chromosome 3p14-p21. Because the filamin B (FLNB gene resides in this region, is the cause of skeletal dysplasias, and was identified among the top genes in our bioinformatics analysis, we hypothesized a role for FLNB in the regulation of bone structure in the general population. Using a tag single nucleotide polymorphism (SNP) approach, a family study of 767 female sibs in which the 3p14-p21 linkage with BMD was previously shown was examined.
View Article and Find Full Text PDFObjective: Previous studies have shown that circulating concentrations of TSH, free T4, and free T3 are genetically regulated, but the genes responsible remain largely unknown. The aim of this study was to identify genetic loci associated with these parameters.
Design: We performed a multipoint, nonparametric genome-wide linkage scan of 613 female dizygotic twin pairs.
Background: Physical inactivity is an important risk factor for many aging-related diseases. Leukocyte telomere dynamics (telomere length and age-dependent attrition rate) are ostensibly a biological indicator of human aging. We therefore tested the hypothesis that physical activity level in leisure time (over the past 12 months) is associated with leukocyte telomere length (LTL) in normal healthy volunteers.
View Article and Find Full Text PDFBackground: Vitamin D is a potent inhibitor of the proinflammatory response and thereby diminishes turnover of leukocytes. Leukocyte telomere length (LTL) is a predictor of aging-related disease and decreases with each cell cycle and increased inflammation.
Objective: The objective of the study was to examine whether vitamin D concentrations would attenuate the rate of telomere attrition in leukocytes, such that higher vitamin D concentrations would be associated with longer LTL.
Objective: To assess whether the association of genetic polymorphisms with osteoarthritis (OA) in other populations could be replicated in a large, multicenter, mixed-sex, case-control study of clinical knee OA.
Methods: Genetic polymorphisms in OA candidate genes were genotyped in 298 men and 305 women, ages 50-86 years, all of whom had a diagnosis of knee OA as assessed clinically and radiographically, and in 300 male and 299 female control subjects matched for age and ethnicity. Allele and haplotype frequencies for 5 genes (ASPN, CALM1, COL2A1, COMP, and FRZB) previously tested for association with hip and/or knee OA in other populations were compared between patients and control subjects, analyzing men and women separately.
A quantitative trait locus (QTL) controlling HbF levels has previously been mapped to chromosome 6q23 in an Asian-Indian kindred with beta thalassemia and heterocellular hereditary persistence of fetal hemoglobin (HPFH). Five protein-coding genes, ALDH8A1, HBS1L, cMYB, AHI1, and PDE7B reside in this 1.5-megabase (Mb) candidate interval of 6q23.
View Article and Find Full Text PDFObjective: Osteoarthritis (OA) is recognized to have a genetic component, and in this study, we aimed to replicate in a case-control study of men and women with clinical knee OA genetic associations in 12 candidate genes previously reported to be associated with OA.
Methods: Twenty-five single-nucleotide polymorphisms were genotyped in 298 men and 305 women ages 50-86 who were diagnosed as having knee OA, as assessed both clinically and radiographically, and in 297 men and 299 women matched for age and ethnicity (controls). Standardized anteroposterior radiographs of the knee in extension were performed on each of the cases, and all cases met the American College of Rheumatology criteria for OA of the knee.
Telomeres play a central role in cellular senescence and cancer pathobiology and are associated with age-related diseases such as atherosclerosis and dementia. Telomere length varies between individuals of the same age, is influenced by DNA-damaging factors such as oxidative stress, and is heritable. We performed a quantitative-trait linkage analysis using an approximate 10-cM genomewide map for mean leukocyte terminal-restriction fragment (TRF) lengths measured by Southern blotting, in 2,050 unselected women aged 18-80 years, comprising 1,025 complete dizygotic twin pairs.
View Article and Find Full Text PDFObesity is a multifactorial disorder with a complex phenotype. It is a significant risk factor for diabetes and hypertension. We assessed obesity-related traits in a large cohort of twins and performed a genome-wide linkage scan and positional candidate analysis to identify genes that play a role in regulating fat mass and distribution in women.
View Article and Find Full Text PDFUsing a novel approach for a two-locus model that provides a greatly increased power to detect multiple quantitative trait loci (QTLs) in simulated data, we identified in a sample of 961 female sib-pairs, three genome-wide significant QTLs for apolipoprotein A1 on chromosomes 8p21.1-q13.1 (LOD score 3.
View Article and Find Full Text PDF