Background: Immune checkpoint inhibitors (ICPIs) have proven to restore adaptive anti-tumor immunity in many cancers; however, no noteworthy therapeutic schedule has been established for patients with glioblastoma (GBM). High programmed death-ligand 1 (PD-L1) expression is associated with immunosuppressive and aggressive phenotypes in GBM. Presently, there is no standardized protocol for assessing PD-L1 expression levels to select patients and monitor their response to ICPI therapy.
View Article and Find Full Text PDFOwing to their ease of engineering and production, chemical stability, size, and high target affinity and specificity, radiolabeled affibody molecules have been recognized as very promising molecular imaging probes in both preclinical and clinical settings. Herein we describe the methods for the preparation of affibody-chelator conjugates and their subsequent radiolabeling with F-AlF, Ga, Zr.
View Article and Find Full Text PDFThere is no established method to assess the PD-L1 expression in brain tumours. Therefore, we investigated the suitability of affibody molecule (Z) radiolabelled with F-18 (AlF) and Ga-68 to measure the expression of PD-L1 in xenograft mouse models of GBM. Mice bearing subcutaneous and orthotopic tumours were imaged 1 h post-radioconjugate administration.
View Article and Find Full Text PDFUnlabelled: Fluorescence-guided surgery is set to play a pivotal role in the intraoperative management of pediatric tumors. Shortwave infrared imaging (SWIR) has advantages over conventional near-infrared I (NIR-I) imaging with reduced tissue scattering and autofluorescence. Here, two NIR-I dyes (IRDye800CW and IR12), with long tails emitting in the SWIR range, were conjugated with a clinical-grade anti-GD2 monoclonal antibody (dinutuximab-beta) to compare NIR-I and SWIR imaging for neuroblastoma surgery.
View Article and Find Full Text PDFSemiconducting polymer nanoparticles (SPNs) are explored for applications in cancer theranostics because of their high absorption coefficients, photostability, and biocompatibility. However, SPNs are susceptible to aggregation and protein fouling in physiological conditions, which can be detrimental for in vivo applications. Here, a method for achieving colloidally stable and low-fouling SPNs is described by grafting poly(ethylene glycol) (PEG) onto the backbone of the fluorescent semiconducting polymer, poly(9,9'-dioctylfluorene-5-fluoro-2,1,3-benzothiadiazole), in a simple one-step substitution reaction, postpolymerization.
View Article and Find Full Text PDFGlioblastoma multiforme (GBM) is the most common and aggressive primary central nervous system tumour in adults. It has extremely poor prognosis since the current standard of care, comprising of gross total resection and temozolomide (TMZ) chemoradiotherapy, prolongs survival, but does not provide a durable response. To a certain extent, this is due to GBM's heterogeneous, hostile and cold tumour microenvironment (TME) and the unique ability of GBM to overcome the host's immune responses.
View Article and Find Full Text PDFA large number of applications for fibroblast activation protein inhibitors (FAPI)-based PET agents have been evaluated in conditions ranging from cancer to non-malignant diseases such as myocardial infarction. In particular, Ga-FAPI-46 was reported to have a high specificity and affinity for FAP-expressing cells, a fast and high accumulation in tumor lesions/injuries together with a fast body clearance when investigated in vivo. Due to the increasing interest in the use of the agent both preclinically and clinically, we developed an automated synthesis for the production of Ga-FAPI-46 on a Trasis AiO platform.
View Article and Find Full Text PDFRecently, the demand for hybrid PET/MRI imaging techniques has increased significantly, which has sparked the investigation into new ways to simultaneously track multiple molecular targets and improve the localization and expression of biochemical markers. Multimodal imaging probes have recently emerged as powerful tools for improving the detection sensitivity and accuracy-both important factors in disease diagnosis and treatment; however, only a limited number of bimodal probes have been investigated in preclinical models. Herein, we briefly describe the strengths and limitations of PET and MRI modalities and highlight the need for the development of multimodal molecularly-targeted agents.
View Article and Find Full Text PDFJunctional adhesion molecules (JAMs) play a critical role in cell permeability, polarity and migration. JAM-A, a key protein of the JAM family, is altered in a number of conditions including cancer; however, consequences of JAM-A dysregulation on carcinogenesis appear to be tissue dependent and organ dependent with significant implications for the use of JAM-A as a biomarker or therapeutic target. Here, we test the expression and prognostic role of JAM-A downregulation in primary and metastatic colorectal cancer (CRC) (n = 947).
View Article and Find Full Text PDFNeuroblastoma (NB) is the most common extracranial solid tumour in childhood, accounting for approximately 15% of all cancer-related deaths in the paediatric population1. It is characterised by heterogeneous clinical behaviour in neonates and often adverse outcomes in toddlers. The overall survival of children with high-risk disease is around 40-50% despite the aggressive treatment protocols consisting of intensive chemotherapy, surgery, radiation therapy and hematopoietic stem cell transplantation2,3.
View Article and Find Full Text PDFNear-InfraRed PhotoImmunoTherapy (NIR-PIT) is a novel cancer-targeted treatment effected by a chemical conjugation between a photosensitiser (e.g. the NIR phthalocyanine dye IRDye700DX) and a cancer-targeting moiety (e.
View Article and Find Full Text PDFTargeted radiotherapy with I-mIBG, a substrate of the human norepinephrine transporter (NET-1), shows promising responses in heavily pre-treated neuroblastoma (NB) patients. Combinatorial approaches that enhance I-mIBG tumour uptake are of substantial clinical interest but biomarkers of response are needed. Here, we investigate the potential of F-mFBG, a positron emission tomography (PET) analogue of the I-mIBG radiotracer, to quantify NET-1 expression levels in mouse models of NB following treatment with AZD2014, a dual mTOR inhibitor.
View Article and Find Full Text PDFThere is an urgent need to develop therapeutic approaches that can increase the response rate to immuno-oncology agents. Photoimmunotherapy has recently been shown to generate anti-tumour immunological responses by releasing tumour-associated antigens from ablated tumour cell residues, thereby enhancing antigenicity and adjuvanticity. Here, we investigate the feasibility of a novel HER2-targeted affibody-based conjugate (Z-IR700) selectively to induce cancer cell death in vitro and in vivo.
View Article and Find Full Text PDFSite-selective bioconjugation of cysteine-containing peptides and proteins is currently achieved via a maleimide-thiol reaction (Michael addition). When maleimide-functionalized chelators are used and the resulting bioconjugates are subsequently radiolabeled, instability has been observed both during radiosynthesis and post-injection in vivo, reducing radiochemical yield and negatively impacting performance. Recently, a phenyloxadiazolyl methylsulfone derivative (PODS) was proposed as an alternative to maleimide for the site-selective conjugation and radiolabeling of proteins, demonstrating improved in vitro stability and in vivo performance.
View Article and Find Full Text PDFBioluminescence imaging (BLI) is ubiquitous in scientific research for the sensitive tracking of biological processes in small animal models. However, due to the attenuation of visible light by tissue, and the limited set of near-infrared bioluminescent enzymes, BLI is largely restricted to monitoring single processes in vivo. Here we show, that by combining stabilised colour mutants of firefly luciferase (FLuc) with the luciferin (LH) analogue infraluciferin (iLH), near-infrared dual BLI can be achieved in vivo.
View Article and Find Full Text PDFIn head and neck squamous cell cancer, the human epidermal growth factor receptor 1 (EGFR) is the dominant signaling molecule among all members of the family. So far, cetuximab is the only approved anti-EGFR monoclonal antibody used for the treatment of head and neck squamous cell cancer, but despite the benefits of adding it to standard treatment regimens, attempts to define a predictive biomarker to stratify patients for cetuximab treatment have been unsuccessful. We hypothesized that imaging with EGFR-specific radioligands may facilitate noninvasive measurement of EGFR expression across the entire tumor burden and allow for dynamic monitoring of cetuximab-mediated changes in receptor expression.
View Article and Find Full Text PDFOverexpression of EGFR is a negative prognostic factor in head and neck squamous cell carcinoma (HNSCC). Patients with HNSCC who respond to EGFR-targeted tyrosine kinase inhibitors (TKIs) eventually develop acquired resistance. Strategies to identify HNSCC patients likely to benefit from EGFR-targeted therapies, together with biomarkers of treatment response, would have clinical value.
View Article and Find Full Text PDFTrifluoromethyl groups are widespread in medicinal chemistry, yet there are limited 18F-radiochemistry techniques available for the production of the complementary PET agents. Herein, we report the first radiosynthesis of the anticancer nucleoside analogue trifluridine, using a fully automated, clinically-applicable 18F-trifluoromethylation procedure. [18F]Trifluridine was obtained after two synthetic steps in <2 hours.
View Article and Find Full Text PDFRecent studies have highlighted a role of HER3 in HER2-driven cancers (e.g., breast cancer), implicating the upregulation of the receptor in resistance to HER-targeted therapies and Hsp90 inhibitors (e.
View Article and Find Full Text PDFGlioblastomas (GBMs) are high-grade brain tumors, differentially driven by alterations (amplification, deletion or missense mutations) in the epidermal growth factor receptor (EGFR), that carry a poor prognosis of just 12-15 months following standard therapy. A combination of interventions targeting tumor-specific cell surface regulators along with convergent downstream signaling pathways may enhance treatment efficacy. Against this background, we investigated a novel photoimmunotherapy approach combining the cytotoxicity of photodynamic therapy with the specificity of immunotherapy.
View Article and Find Full Text PDFExpert Opin Drug Deliv
February 2018
Introduction: Radioimmunotherapy (RIT) with monoclonal antibodies and their fragments labelled with radionuclides emitting α -particles, β-particles or Auger electrons have been used for many years in the development of anticancer strategies. While RIT has resulted in approved radiopharmaceuticals for the treatment of hematological malignancies, its use in solid tumors still remains challenging.
Areas Covered: In this review, we discuss the exciting progress towards elucidating the potential of current and novel radioimmunoconjugates and address the challenges for translation into clinical practice.
Glioblastoma (GBM) is a primary neuroepithelial tumor of the central nervous system, characterized by an extremely aggressive clinical phenotype. Patients with GBM have a poor prognosis and only 3-5% of them survive for more than 5 years. The current GBM treatment standards include maximal resection followed by radiotherapy with concomitant and adjuvant therapies.
View Article and Find Full Text PDF