Antimicrobial peptides (AMPs) are promising alternatives to traditional antibiotics in the treatment of bacterial infections in part due to their targeting of generic bacterial structures that make it more difficult to develop drug resistance. In this study, we introduce and implement a design workflow to develop more potent AMPs by improving their electrostatic interactions with DNA, which is a putative intracellular target. Using the existing membrane-translocating AMP buforin II (BF2) as a starting point, we use a computational workflow that integrates electrostatic charge optimization, continuum electrostatics, and molecular dynamics simulations to suggest peptide positions at which a neutral BF2 residue could be substituted with arginine to increase DNA-binding affinity either significantly or minimally, with the latter choice done to determine whether AMP binding affinity depends on charge distribution and not just overall monopole.
View Article and Find Full Text PDF