Tumor heterogeneity results in aggressive cancer phenotypes with acquired resistance. However, combining chemical treatment with adjuvant therapies that cause cellular structure and function perturbations may diminish the ability of cancer cells to resist at chemical treatment and lead to a less aggressive cancer phenotype. Applied treatments on prostate hyperplasia primary cell cultures exerted their antitumor activities through mechanisms including cell cycle blockage, oxidative stress, and cell death induction by flow cytometry methods.
View Article and Find Full Text PDFOur study highlights the apoptosis, cell cycle, DNA ploidy, and autophagy molecular mechanisms network to identify prostate pathogenesis and its prognostic role. Caspase 3/7 expressions, cell cycle, adhesion glycoproteins, autophagy, nuclear shrinkage, and oxidative stress by flow-cytometry analysis are used to study the BPH microenvironment's heterogeneity. A high late apoptosis expression by caspases 3/7 activity represents an unfavorable prognostic biomarker, a dependent predictor factor for cell adhesion, growth inhibition by arrest in the G2/M phase, and oxidative stress processes network.
View Article and Find Full Text PDF