Publications by authors named "Gabriela Gongora-Svartzman"

Disasters strike communities around the world, with a reduced time-frame for warning and action leaving behind high rates of damage, mortality, and years in rebuilding efforts. For the past decade, social media has indicated a positive role in communicating before, during, and after disasters. One important question that remained un-investigated is that whether social media efficiently connect affected individuals to disaster relief agencies, and if not, how AI models can use historical data from previous disasters to facilitate information exchange between the two groups.

View Article and Find Full Text PDF

Natural disasters affect thousands of communities every year, leaving behind human losses, billions of dollars in rebuilding efforts, and psychological affectation in survivors. How fast a community recovers from a disaster or even how well a community can mitigate risk from disasters depends on how resilient that community is. One main factor that influences communities' resilience is how a community comes together in times of need.

View Article and Find Full Text PDF

Symbolic sequential data are produced in huge quantities in numerous contexts, such as text and speech data, biometrics, genomics, financial market indexes, music sheets, and online social media posts. In this paper, an unsupervised approach for the chunking of idiomatic units of sequential text data is presented. Text chunking refers to the task of splitting a string of textual information into non-overlapping groups of related units.

View Article and Find Full Text PDF