We disclose a highly regioselective, catalytic one-step dehydrogenation of α-substituted cyclic ketones in the presence of 2,3-dichlorobenzo-5,6-dicyano-1,4-benzoquinone (DDQ). The high regioselectivity originates from a phosphoric acid-catalyzed enolization, selectively affording the thermodynamically preferred enol, followed by the subsequent oxidation event. Our method provides reliable access to several α-aryl and α-alkyl substituted α,β-unsaturated ketones.
View Article and Find Full Text PDFWe have designed and realized an efficient and operationally simple single-flask synthesis of imidodiphosphate-based Brønsted acids. The methodology proceeds consecutive chloride substitutions of hexachlorobisphosphazonium salts, providing rapid access to imidodiphosphates (IDP), iminoimidodiphosphates (IDP), and imidodiphosphorimidates (IDPi). These privileged acid catalysts feature a broad acidity range (p from ∼11 to <2 in MeCN) and a readily tunable confined active site.
View Article and Find Full Text PDFThe discovery of efficient organocatalysts is generally carried out by thorough experimental screening of different candidates. We recently reported an efficient organocatalyst for iminium-ion-based asymmetric Diels-Alder reactions following a rational design approach. This result encouraged us to test this optimal catalyst in the mechanistically related Friedel-Crafts alkylation of indoles, but to our surprise, almost null enantioselectivity was observed.
View Article and Find Full Text PDFWe disclose a new Brønsted acid promoted quinoline synthesis, proceeding via homo-diaza-Cope rearrangement of N-aryl-N'-cyclopropyl hydrazines. Our strategy can be considered a homologation of Fischer's classical indole synthesis and delivers 6-membered N-heterocycles, including previously inaccessible pyridine derivatives. This approach can also be used as a pyridannulation methodology toward constructing polycyclic polyheteroaromatics.
View Article and Find Full Text PDFThe 1,3-dipolar cycloaddition reactions of azomethine ylides is one of the preferred methods for the synthesis of polysubstituted pyrrolidines. The use of chiral dipolarophiles derived from carbohydrates yields enantiomerically pure pyrrolidines, usually in good to excellent endo selectivities, along with other minor stereoisomers. Recently, we found an unusual isomerization event that allowed the isolation of useful pyrrolidines with relative stereochemistries difficult to obtain otherwise.
View Article and Find Full Text PDFAn efficient organocatalyst for iminium-ion based asymmetric Diels-Alder (DA) reactions has been rationally designed. The most influential structure-activity relationships were determined experimentally, while DFT calculations and NMR studies provided further mechanistic insight. This knowledge guided an in silico screening of 62 different catalysts using an ONIOM(B3LYP/6-31G*:AM1) transition-state modeling, which showed good correlation between theory and experiment.
View Article and Find Full Text PDF