While pyrolyzed paper (PP) is a green and abundant material that can provide functionalized electrodes with wide detection windows for a plethora of targets, it poses long-standing challenges against sensing assays such as poor electrical conductivity, with resistivities generally higher than 200.0 mΩ cm (, gold and silver show resistivities 1000-fold lower, ∼0.2 mΩ cm).
View Article and Find Full Text PDFThe so-coined fourth paradigm in science has reached the sensing area, with the use of machine learning (ML) toward data-driven improvements in sensitivity, reproducibility, and accuracy, along with the determination of multiple targets from a single measurement using multi-output regression models. Particularly, the use of supervised ML models trained on large data sets produced by electrical and electrochemical bio/sensors has emerged as an impacting trend in the literature by allowing accurate analyses even in the presence of usual issues such as electrode fouling, poor signal-to-noise ratio, chemical interferences, and matrix effects. In this trend article, apart from an outlook for the coming years, we present examples from the literature that demonstrate how helpful ML algorithms can be for dispensing the adoption of experimental methods to address the aforesaid interfering issues, ultimately contributing to translate testing technologies into on-site, practical, and daily applications.
View Article and Find Full Text PDFThe real-time and monitoring of the synthesis of nanomaterials (NMs) remains a challenging task, which is of pivotal importance by assisting fundamental studies (e.g., synthesis kinetics and colloidal phenomena) and providing optimized quality control.
View Article and Find Full Text PDFThe monitoring of toxic inorganic gases and volatile organic compounds has brought the development of field-deployable, sensitive, and scalable sensors into focus. Here, we attempted to meet these requirements by using concurrently microhole-structured meshes as (i) a membrane for the gas diffusion extraction of an analyte from a donor sample and (ii) an electrode for the sensitive electrochemical determination of this target with the receptor electrolyte at rest. We used two types of meshes with complementary benefits, i.
View Article and Find Full Text PDFDistillation is widely used in industrial processes and laboratories for sample pre-treatment. The conventional apparatus of flash distillation is composed of heating source, distilling flask, condenser, and receiving flask. As disadvantages, this method shows manual and laborious analyses with high consumption of chemicals.
View Article and Find Full Text PDFThe contamination, passivation, or fouling of the detection electrodes is a serious problem undermining the analytical performance of electroanalytical devices. The methods to regenerate the electrochemical activity of the solid electrodes involve mechanical, physical, or chemical surface treatments that usually add operational time, complexity, chemicals, and further instrumental requirements to the analysis. In this paper, we describe for the first time a reproducible method for renewing solid electrodes whenever their morphology or composition are nonspecifically changed without any surface treatment.
View Article and Find Full Text PDFThis paper addresses an important breakthrough in the deployment of ultra-high adhesion strength microfluidic technologies to provide turbulence at harsh flow rate conditions. This paper is only, to our knowledge, the second reporting on the generation of high flow rate-assisted turbulence in microchannels. This flow solves a crucial bottleneck in microfluidics: the generation of high throughput homogeneous mixings.
View Article and Find Full Text PDFIn this paper, we demonstrate for the first time the use of silver nanoparticles (AgNPs) for colorimetric ascorbic acid (AA) quantification in a paper-based sensor. This device is constituted by spot tests modified with AgNPs and silver ions bordered by a hydrophobic barrier which provides quantitative and fast analysis of AA. In addition, this device is employed as point-of-care monitoring using a unique drop of the sample.
View Article and Find Full Text PDFAn integrated platform was developed for point-of-use determination of ethanol in sugar cane fermentation broths. Such analysis is important because ethanol reduces its fuel production efficiency by altering the alcoholic fermentation step when in excess. The custom-designed platform integrates gas diffusion separation with voltammetric detection in a single analysis module.
View Article and Find Full Text PDF