For decades, the risk of exposure to infectious diseases in recreational beaches has been evaluated through the quantification of fecal indicator bacteria in water samples using culture methods. The analyses of sand samples have recently been developed as a complement to the monitoring of recreational waters in beach quality assessments. The growing use of molecular techniques for environmental monitoring allows for the rapid detection of pathogenic genes, thus providing more accurate information regarding the health risk of exposure to contaminated sand.
View Article and Find Full Text PDFThe presence of arsenic in groundwater and other drinking water sources presents a notable public health concern. Although the utilization of iron oxide nanomaterials as arsenic adsorbents has shown promising results in batch experiments, few have succeeded in using nanomaterials in filter setups. In this study, the performance of nanomaterials, supported on sand, was first compared for arsenic adsorption by conducting continuous flow experiments.
View Article and Find Full Text PDFThe increased bioavailability of nanoparticles engineered for good dispersion in water may have biological and environmental impacts. To examine this issue, the authors assessed the biological effects in nematodes as they relate to exposure to silver nanoparticles (AgNPs) of different sizes at low (1 mg/L Ag), medium (10 mg/L Ag), and high concentrations (100 mg/L Ag). Over multiple generations, the authors found that the smallest particle, at 2 nm, had a notable impact on nematode fertility.
View Article and Find Full Text PDFTo fully understand the biological and environmental impacts of nanomaterials requires studies that address both sublethal end points and multigenerational effects. Here, we use a nematode to examine these issues as they relate to exposure to two different types of quantum dots, core (CdSe) and core-shell (CdSe/ZnS), and to compare the effect to those observed after cadmium salt exposures. The strong fluorescence of the core-shell QDs allowed for the direct visualization of the materials in the digestive track within a few hours of exposure.
View Article and Find Full Text PDF