Advances in single cell sequencing have enabled the identification of a large number of genes, expressed in many different cell types, and across a variety of model organisms. In particular, the nervous system harbors an immense number of interacting cell types, which are poorly characterized. Future loss- and gain-of-function experiments will be essential in determining how novel genes play critical roles in diverse cellular, as well as evolutionarily adapted, contexts.
View Article and Find Full Text PDFDynamic contacts are formed between endoplasmic reticulum (ER) and mitochondria that enable the exchange of calcium and phospholipids. Disturbed contacts between ER and mitochondria impair mitochondrial dynamics and are a molecular hallmark of Parkinson's disease, which is also characterized by impaired complex I activity and dopaminergic neuron degeneration. Here, we analyzed the role of cysteine-rich with EGF-like domain (Creld), a poorly characterized risk gene for Parkinson's disease, in the regulation of mitochondrial dynamics and function.
View Article and Find Full Text PDFThe molecular and cellular mechanisms underlying complex axon morphogenesis are still poorly understood. We report a novel, evolutionary conserved function for the Drosophila Wnk kinase (dWnk) and its mammalian orthologs, WNK1 and 2, in axon branching. We uncover that dWnk, together with the neuroprotective factor Nmnat, antagonizes the axon-destabilizing factors D-Sarm and Axundead (Axed) during axon branch growth, revealing a developmental function for these proteins.
View Article and Find Full Text PDFBackground: The efficient regenerative abilities at larvae stages followed by a non-regenerative response after metamorphosis in froglets makes Xenopus an ideal model organism to understand the cellular responses leading to spinal cord regeneration.
Methods: We compared the cellular response to spinal cord injury between the regenerative and non-regenerative stages of Xenopus laevis. For this analysis, we used electron microscopy, immunofluorescence and histological staining of the extracellular matrix.
Astrocytes are ubiquitous in the central nervous system (CNS). These cells possess thousands of individual processes, which extend out into the neuropil, interacting with neurons, other glia and blood vessels. Paralleling the wide diversity of their interactions, astrocytes have been reported to play key roles in supporting CNS structure, metabolism, blood-brain-barrier formation and control of vascular blood flow, axon guidance, synapse formation and modulation of synaptic transmission.
View Article and Find Full Text PDFStudying the cellular composition and morphological changes of cells lining the central canal during Xenopus laevis metamorphosis could contribute to understand postnatal development and spinal cord regeneration. Here we report the analysis of central canal cells at different stages during metamorphosis using immunofluorescence for protein markers expression, transmission and scanning electron microscopy and cell proliferation assays. The central canal was regionalized according to expression of glial markers, ultrastructure, and proliferation in dorsal, lateral, and ventral domains with differences between larvae and froglets.
View Article and Find Full Text PDFHere we present a protocol for the husbandry of Xenopus laevis tadpoles and froglets, and procedures to study spinal cord regeneration. This includes methods to induce spinal cord injury (SCI); DNA and morpholino electroporation for genetic studies; in vivo imaging for cell analysis; a swimming test to measure functional recovery; and a convenient model for screening for new compounds that promote neural regeneration. These protocols establish X.
View Article and Find Full Text PDFSpinal cord regeneration is very inefficient in humans, causing paraplegia and quadriplegia. Studying model organisms that can regenerate the spinal cord in response to injury could be useful for understanding the cellular and molecular mechanisms that explain why this process fails in humans. Here, we use Xenopus laevis as a model organism to study spinal cord repair.
View Article and Find Full Text PDFUnlike mammals, regenerative model organisms such as amphibians and fish are capable of spinal cord regeneration after injury. Certain key differences between regenerative and nonregenerative organisms have been suggested as involved in promoting this process, such as the capacity for neurogenesis and axonal regeneration, which appear to be facilitated by favorable astroglial, inflammatory and immune responses. These traits provide a regenerative-permissive environment that the mammalian spinal cord appears to be lacking.
View Article and Find Full Text PDF