Publications by authors named "Gabriela De la Cruz"

Despite the wide availability of several safe and effective vaccines that prevent severe COVID-19, the persistent emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) that can evade vaccine-elicited immunity remains a global health concern. In addition, the emergence of SARS-CoV-2 VOCs that can evade therapeutic monoclonal antibodies underscores the need for additional, variant-resistant treatment strategies. Here, we characterize the antiviral activity of GS-5245, obeldesivir (ODV), an oral prodrug of the parent nucleoside GS-441524, which targets the highly conserved viral RNA-dependent RNA polymerase (RdRp).

View Article and Find Full Text PDF

Whole virus-based inactivated SARS-CoV-2 vaccines adjuvanted with aluminum hydroxide have been critical to the COVID-19 pandemic response. Although these vaccines are protective against homologous coronavirus infection, the emergence of novel variants and the presence of large zoonotic reservoirs harboring novel heterologous coronaviruses provide significant opportunities for vaccine breakthrough, which raises the risk of adverse outcomes like vaccine-associated enhanced respiratory disease. Here, we use a female mouse model of coronavirus disease to evaluate inactivated vaccine performance against either homologous challenge with SARS-CoV-2 or heterologous challenge with a bat-derived coronavirus that represents a potential emerging disease threat.

View Article and Find Full Text PDF
Article Synopsis
  • - The Ebola virus (EBOV) causes serious and often fatal disease in humans, and understanding genetic factors in hosts is crucial to determining susceptibility to the virus.
  • - Researchers created a genetic mapping cohort with mice to find specific loci linked to susceptibility to Ebola virus disease (EVD), discovering key regions on chromosomes 8 and 7 that correlate with disease severity and RNA load.
  • - The study identified the Trim5 locus as a significant factor affecting liver failure and mortality in EBOV infection, offering insights that could enhance treatment and vaccine development for EVD.
View Article and Find Full Text PDF

Background: Platinum-based neoadjuvant chemotherapy (NAC) is standard for patients with muscle-invasive bladder cancer (MIBC). Pathologic response (complete: ypT0N0 and partial: View Article and Find Full Text PDF

Non-cystic fibrosis bronchiectasis (NCFB) may originate in bronchiolar regions of the lung. Accordingly, there is a need to characterize the morphology and molecular characteristics of NCFB bronchioles. Test the hypothesis that NCFB exhibits a major component of bronchiolar disease manifest by mucus plugging and ectasia.

View Article and Find Full Text PDF

Inactivated whole virus SARS-CoV-2 vaccines adjuvanted with aluminum hydroxide (Alum) are among the most widely used COVID-19 vaccines globally and have been critical to the COVID-19 pandemic response. Although these vaccines are protective against homologous virus infection in healthy recipients, the emergence of novel SARS-CoV-2 variants and the presence of large zoonotic reservoirs provide significant opportunities for vaccine breakthrough, which raises the risk of adverse outcomes including vaccine-associated enhanced respiratory disease (VAERD). To evaluate this possibility, we tested the performance of an inactivated SARS-CoV-2 vaccine (iCoV2) in combination with Alum against either homologous or heterologous coronavirus challenge in a mouse model of coronavirus-induced pulmonary disease.

View Article and Find Full Text PDF
Article Synopsis
  • Only condoms effectively prevent both HIV and unplanned pregnancies, but user acceptability and partner cooperation can reduce their effectiveness.
  • Researchers developed a novel injectable implant that combines antiretroviral drugs (like dolutegravir and cabotegravir) with hormonal contraceptives (etonogestrel and medroxyprogesterone acetate) for multipurpose prevention.
  • Studies in mice showed that this implant is safe and well-tolerated, maintaining effective drug concentrations for 90 days after administration, indicating its potential as an effective preventive method.
View Article and Find Full Text PDF

Background Aims: Human genetic variation is thought to guide the outcome of HCV infection, but model systems within which to dissect these host genetic mechanisms are limited. Norway rat hepacivirus, closely related to HCV, causes chronic liver infection in rats but causes acute self-limiting hepatitis in typical strains of laboratory mice, which resolves in 2 weeks. The Collaborative Cross (CC) is a robust mouse genetics resource comprised of a panel of recombinant inbred strains, which model the complexity of the human genome and provide a system within which to understand diseases driven by complex allelic variation.

View Article and Find Full Text PDF

Despite the wide availability of several safe and effective vaccines that can prevent severe COVID-19 disease, the emergence of SARS-CoV-2 variants of concern (VOC) that can partially evade vaccine immunity remains a global health concern. In addition, the emergence of highly mutated and neutralization-resistant SARS-CoV-2 VOCs such as BA.1 and BA.

View Article and Find Full Text PDF

Ultra-long-acting delivery platforms for HIV pre-exposure prophylaxis (PrEP) may increase adherence and maximize public health benefit. We report on an injectable, biodegradable, and removable in-situ forming implant (ISFI) that is administered subcutaneously and can release the integrase inhibitor cabotegravir (CAB) above protective benchmarks for more than 6 months. CAB ISFIs are well-tolerated in female mice and female macaques showing no signs of toxicity or chronic inflammation.

View Article and Find Full Text PDF

Microcephaly often results from mitotic defects in neuronal progenitors, frequently by decreasing proliferation rates or shifting cell fates. During neurogenesis, oriented cell division-the molecular control of mitotic spindle positioning to control the axis of division-represents an important mechanism to balance expansion of the progenitor pool with generating cellular diversity. While mostly studied in the context of cortical development, more recently, spindle orientation has emerged as a key player in the formation of other brain regions such as the cerebellum.

View Article and Find Full Text PDF

Neural progenitors show a strong tendency to undergo apoptosis in response to DNA damage, and both impaired DNA repair and increased neural progenitor apoptosis are associated with microcephaly. Here we present an immunohistochemistry-based method for assessing DNA damage and apoptosis in the neonatal mouse brain. These methods are suitable for determining in specific experimental conditions the fractions of cells with DNA double-strand breaks, the fractions of cells undergoing apoptosis, or both.

View Article and Find Full Text PDF

Analyzing sections of neonatal mouse brain using immunohistochemistry can inform microcephaly pathogenesis, but obtaining and staining high-quality sections can be challenging. The neonatal brain shows less structural integrity than the adult brain. As a result, embedding technique must be optimized to allow sections without cracks or other anatomic disruptions.

View Article and Find Full Text PDF

A subset of individuals who recover from coronavirus disease 2019 (COVID-19) develop post-acute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (PASC), but the mechanistic basis of PASC-associated lung abnormalities suffers from a lack of longitudinal tissue samples. The mouse-adapted SARS-CoV-2 strain MA10 produces an acute respiratory distress syndrome in mice similar to humans. To investigate PASC pathogenesis, studies of MA10-infected mice were extended from acute to clinical recovery phases.

View Article and Find Full Text PDF

Although current antiretroviral therapy (ART) has increased life expectancy, a cure for human immunodeficiency virus (HIV) remains elusive due to the persistence of the virus in tissue reservoirs. In the present study, we sought to elucidate the relationship between antiretrovirals (ARVs) and viral expression in the spleen. We performed mass spectrometry imaging (MSI) of 6 different ARVs, RNAscope hybridization of viral RNA, and immunohistochemistry of three different fibrosis markers in the spleens of 8 uninfected and 10 reverse transcriptase simian-human immunodeficiency virus (RT-SHIV)-infected rhesus macaques (infected for 6 weeks) that had been dosed for 10 days with combination ART.

View Article and Find Full Text PDF

The incidence and sites of mucus accumulation and molecular regulation of mucin gene expression in coronavirus (COVID-19) lung disease have not been reported. To characterize the incidence of mucus accumulation and the mechanisms mediating mucin hypersecretion in COVID-19 lung disease. Airway mucus and mucins were evaluated in COVID-19 autopsy lungs by Alcian blue and periodic acid-Schiff staining, immunohistochemical staining, RNA hybridization, and spatial transcriptional profiling.

View Article and Find Full Text PDF

Background: Per- and polyfluoroalkyl substances (PFAS) have been associated with respiratory diseases in humans, yet the mechanisms through which PFAS cause susceptibility to inhaled agents is unknown. Herein, we investigated the effects of ammonium perfluoro(2-methyl-3-oxahexanoate) (GenX), an emerging PFAS, on the pulmonary immune response of mice to carbon black nanoparticles (CBNP). We hypothesized that pulmonary exposure to GenX would increase susceptibility to CBNP through suppression of innate immunity.

View Article and Find Full Text PDF

COVID-19 survivors develop post-acute sequelae of SARS-CoV-2 (PASC), but the mechanistic basis of PASC-associated lung abnormalities suffers from a lack of longitudinal samples. Mouse-adapted SARS-CoV-2 MA10 produces an acute respiratory distress syndrome (ARDS) in mice similar to humans. To investigate PASC pathogenesis, studies of MA10-infected mice were extended from acute disease through clinical recovery.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronaviruses 1 (SARS-CoV) and 2 (SARS-CoV-2), including SARS-CoV-2 variants of concern, can cause deadly infections. The mortality associated with sarbecovirus infection underscores the importance of developing broadly effective countermeasures against them, which could be key in the prevention and mitigation of current and future zoonotic events. Here, we demonstrate the neutralization of SARS-CoV; bat coronaviruses WIV-1 and RsSHC014; and SARS-CoV-2 variants D614G, B.

View Article and Find Full Text PDF

The emergence of severe acute respiratory syndrome coronavirus (SARS-CoV) in 2003 and SARS-CoV-2 in 2019 highlights the need to develop universal vaccination strategies against the broader subgenus. Using chimeric spike designs, we demonstrate protection against challenge from SARS-CoV, SARS-CoV-2, SARS-CoV-2 B.1.

View Article and Find Full Text PDF

SARS-CoV in 2003, SARS-CoV-2 in 2019, and SARS-CoV-2 variants of concern (VOC) can cause deadly infections, underlining the importance of developing broadly effective countermeasures against Group 2B Sarbecoviruses, which could be key in the rapid prevention and mitigation of future zoonotic events. Here, we demonstrate the neutralization of SARS-CoV, bat CoVs WIV-1 and RsSHC014, and SARS-CoV-2 variants D614G, B.1.

View Article and Find Full Text PDF

Human immunodeficiency virus (HIV) persistence in tissue reservoirs is a major barrier to HIV cure. While antiretrovirals (ARVs) suppress viral replication, antiretroviral therapy (ART) interruption results in rapid rebound viremia that may originate from lymphoid tissues. To understand the relationship between anatomic distribution of ARV exposure and viral expression in lymph nodes, we performed mass spectrometry imaging (MSI) of 6 ARVs, RNAscope hybridization for viral RNA (vRNA), and immunohistochemistry of collagen in mesenteric lymph nodes from 8 uninfected and 10 reverse transcriptase simian/human immunodeficiency virus (RT-SHIV)-infected rhesus macaques dosed to steady state with combination ART.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers demonstrated that chimeric spike mRNAs offer broad protection in test mice against multiple variants and related coronaviruses, producing high levels of neutralizing antibodies.
  • * In contrast, traditional SARS-CoV-2 mRNA vaccines show reduced effectiveness against variants and can lead to infections, indicating chimeric spike vaccines could be a better option for preventing future zoonotic coronavirus outbreaks.
View Article and Find Full Text PDF

HIV replication within tissues may increase in response to a reduced exposure to antiretroviral drugs. Traditional approaches to measuring drug concentrations in tissues are unable to characterize a heterogeneous drug distribution. Here, we used mass spectrometry imaging (MSI) to visualize the distribution of six HIV antiretroviral drugs in gut tissue sections from three species (two strains of humanized mice, macaques, and humans).

View Article and Find Full Text PDF