Severely-afflicted COVID-19 patients can exhibit disease manifestations representative of sepsis, including acute respiratory distress syndrome and multiple organ failure. We hypothesized that diagnostic tools used in managing all-cause sepsis, such as clinical criteria, biomarkers, and gene expression signatures, should extend to COVID-19 patients. Here we analyzed the whole blood transcriptome of 124 early (1-5 days post-hospital admission) and late (6-20 days post-admission) sampled patients with confirmed COVID-19 infections from hospitals in Quebec, Canada.
View Article and Find Full Text PDFAdaptive PENSE is a method that can be used to build models for predicting clinical outcomes from a small subset of a potentially large number of candidate proteins. Adaptive PENSE is designed to give reliable results under two common challenges often encountered in these kinds of studies: (1) the number of samples with known clinical outcome and proteomic data is small, while the number of candidate proteins is large and/or (2) proteomic data and the clinical outcome measurements suffer from data quality issues in a small fraction of samples. Even in the presence of these challenges, adaptive PENSE reliably identifies proteins relevant for prediction and estimates accurate predictive models.
View Article and Find Full Text PDFThe continuous evolution of metabolomics over the past two decades has stimulated the search for metabolic biomarkers of many diseases. Metabolomic data measured from urinary samples can provide rich information of the biological events triggered by organ rejection in pediatric kidney transplant recipients. With additional validation, metabolic markers can be used to build clinically useful diagnostic tools.
View Article and Find Full Text PDFBackground: Inter-individual variability during sepsis limits appropriate triage of patients. Identifying, at first clinical presentation, gene expression signatures that predict subsequent severity will allow clinicians to identify the most at-risk groups of patients and enable appropriate antibiotic use.
Methods: Blood RNA-Seq and clinical data were collected from 348 patients in four emergency rooms (ER) and one intensive-care-unit (ICU), and 44 healthy controls.
Transmembrane protein 30A (TMEM30A) maintains the asymmetric distribution of phosphatidylserine, an integral component of the cell membrane and 'eat-me' signal recognized by macrophages. Integrative genomic and transcriptomic analysis of diffuse large B-cell lymphoma (DLBCL) from the British Columbia population-based registry uncovered recurrent biallelic TMEM30A loss-of-function mutations, which were associated with a favorable outcome and uniquely observed in DLBCL. Using TMEM30A-knockout systems, increased accumulation of chemotherapy drugs was observed in TMEM30A-knockout cell lines and TMEM30A-mutated primary cells, explaining the improved treatment outcome.
View Article and Find Full Text PDFPurpose: A highly-multiplexed LC-ESI-multiple reaction monitoring-MS-based assay is developed for the identification of coronary artery disease (CAD) biomarkers in human plasma.
Experimental Design: The assay is used to measure 107 stable isotope labeled peptide standards and native peptides from 64 putative biomarkers of cardiovascular diseases in tryptic digests of plasma from subjects with (n = 70) and without (n = 45) angiographic evidence of CAD and no subsequent cardiovascular mortality during follow-up.
Results: Extensive computational and statistical analysis reveals six plasma proteins associated with CAD, namely apolipoprotein CII, C reactive protein, CD5 antigen-like, fibronectin, inter alpha trypsin inhibitor heavy chain H1, and protein S.
Am J Respir Crit Care Med
February 2018
Rationale: The allergen inhalation challenge is used in clinical trials to test the efficacy of new treatments in attenuating the late-phase asthmatic response (LAR) and associated airway inflammation in subjects with allergic asthma. However, not all subjects with allergic asthma develop the LAR after allergen inhalation. Blood-based transcriptional biomarkers that can identify such individuals may help in subject recruitment for clinical trials as well as provide novel molecular insights.
View Article and Find Full Text PDFThe quantitation of proteins using shotgun proteomics has gained popularity in the last decades, simplifying sample handling procedures, removing extensive protein separation steps and achieving a relatively high throughput readout. The process starts with the digestion of the protein mixture into peptides, which are then separated by liquid chromatography and sequenced by tandem mass spectrometry (MS/MS). At the end of the workflow, recovering the identity of the proteins originally present in the sample is often a difficult and ambiguous process, because more than one protein identifier may match a set of peptides identified from the MS/MS spectra.
View Article and Find Full Text PDFUnlabelled: Multiple sclerosis (MS) is associated with chronic degeneration of the central nervous system and may cause permanent neurological problems and considerable disability. While its causes remain unclear, its extensive phenotypic variability makes its prognosis and treatment difficult. The identification of serum proteomic biomarkers of MS progression could further our understanding of the molecular mechanisms related to MS disease processes.
View Article and Find Full Text PDFAims: Chronic heart failure is a costly epidemic that affects up to 2% of people in developed countries. The purpose of this study was to discover novel blood proteomic biomarker signatures of recovered heart function that could lead to more effective heart failure patient management by both primary care and specialty physicians.
Methods And Results: The discovery cohort included 41 heart transplant patients and 20 healthy individuals.
J Heart Lung Transplant
July 2013
Background: Coronary angiography remains the most widely used tool for routine screening and diagnosis of cardiac allograft vasculopathy (CAV), a major pathologic process that develops in 50% of cardiac transplant recipients beyond the first year after transplant. Given the invasiveness, expense, discomfort, and risk of complications associated with angiography, a minimally invasive alternative that is sensitive and specific would be highly desirable for monitoring CAV in patients.
Methods: Plasma proteomic analysis using isobaric tags for relative and absolute quantitation-matrix-assisted laser desorption ionization double time-of-flight mass spectrometry was carried out on samples from 40 cardiac transplant patients (10 CAV, 9 non-significant CAV, 21 possible CAV).
Recent technical advances in the field of quantitative proteomics have stimulated a large number of biomarker discovery studies of various diseases, providing avenues for new treatments and diagnostics. However, inherent challenges have limited the successful translation of candidate biomarkers into clinical use, thus highlighting the need for a robust analytical methodology to transition from biomarker discovery to clinical implementation. We have developed an end-to-end computational proteomic pipeline for biomarkers studies.
View Article and Find Full Text PDFBackground: Acute rejection in cardiac transplant patients remains a contributory factor to limited survival of implanted hearts. Currently, there are no biomarkers in clinical use that can predict, at the time of transplantation, the likelihood of post-transplant acute cellular rejection. Such a development would be of great value in personalizing immunosuppressive treatment.
View Article and Find Full Text PDFBackground: Biomarker panels derived separately from genomic and proteomic data and with a variety of computational methods have demonstrated promising classification performance in various diseases. An open question is how to create effective proteo-genomic panels. The framework of ensemble classifiers has been applied successfully in various analytical domains to combine classifiers so that the performance of the ensemble exceeds the performance of individual classifiers.
View Article and Find Full Text PDFPurpose: This proteomics study was designed to determine the utility of iTRAQ MALDI-TOF/TOF technology to compare plasma samples from carefully phenotyped mild, atopic asthma subjects undergoing allergen inhalation challenge.
Experimental Design: Eight adult subjects with mild, allergic asthma (four early responders (ERs) and four dual responders (DRs)) participated in the allergen inhalation challenge. Blood samples were collected prior to and 2 h after the inhalation challenge.
In this study we demonstrate the use of a multiplexed MRM-based assay to distinguish among normal (NL) and iron-metabolism disorder mouse models, particularly, iron-deficiency anemia (IDA), inflammation (INFL), and inflammation and anemia (INFL+IDA). Our initial panel of potential biomarkers was based on the analysis of 14 proteins expressed by candidate genes involved in iron transport and metabolism. Based on this study, we were able to identify a panel of 8 biomarker proteins: apolipoprotein A4 (APO4), transferrin, transferrin receptor 1, ceruloplasmin, haptoglobin, lactoferrin, hemopexin, and matrix metalloproteinase-8 (MMP8) that clearly distinguish among the normal and disease models.
View Article and Find Full Text PDFBackground: To date, gene expression studies related to chronic heart failure (CHF) have mainly involved microarray analysis of myocardial tissues. The potential utility of blood to infer the etiology, pathogenesis, and course of CHF remains unclear. Further, the use of proteomic and metabolomic platforms for molecular profiling of CHF is relatively unexplored.
View Article and Find Full Text PDFBackground: Acute rejection is still a significant barrier to long-term survival of the allograft. Current acute rejection diagnostic methods are not specific enough or are invasive. There have been a number of studies that have explored the blood or the biopsy to discover genomic biomarkers of acute rejection; however, none of the studies to date have used both.
View Article and Find Full Text PDFBackground: Acute graft rejection is an important clinical problem in renal transplantation and an adverse predictor for long-term graft survival. Peripheral blood biomarkers that provide evidence of early graft rejection may offer an important option for posttransplant monitoring, optimize the utility of graft biopsy, and permit timely and effective therapeutic intervention to minimize the graft damage.
Methods: In this feasibility study (n=58), we have used gene expression profiling in a case-control design to compare whole blood samples between normal subjects (n=20) and patients with (n=11) or without (n=22) biopsy-confirmed acute rejection (BCAR) or borderline changes (n=5).
J Heart Lung Transplant
September 2009
Background: Significant progress has been made in cardiac transplantation over the past 30 years; however, the means for detection of acute cardiac allograft rejection remains in need of improvement. At present, the endomyocardial biopsy, an invasive and inconvenient procedure for patients, is required for the surveillance and diagnosis of acute cardiac allograft rejection. In the Biomarkers in Transplantation initiative, we investigated gene expression profiles in peripheral blood of cardiac transplant subjects as potential biomarkers for diagnosis of allograft rejection.
View Article and Find Full Text PDFMotivation: The process of producing microarray data involves multiple steps, some of which may suffer from technical problems and seriously damage the quality of the data. Thus, it is essential to identify those arrays with low quality. This article addresses two questions: (1) how to assess the quality of a microarray dataset using the measures provided in quality control (QC) reports; (2) how to identify possible sources of the quality problems.
View Article and Find Full Text PDFThe completion of the genomic sequences of many protozoan pathogens of humans, including species of Leishmania, Trypanosoma and Plasmodium, provide new approaches to study the pattern of gene expression during differentiation and development. Leishmania are a major public health risk in many countries and cause a wide spectrum of clinical disease referred to as leishmaniasis. The Leishmania life cycle consists of two morphologically distinct stages: intracellular amastigotes that reside in the phagolysosome of mammalian macrophages, and extracellular promastigotes that reside within the gut of the sandfly vector.
View Article and Find Full Text PDFLeishmania are protozoan parasites that cause a wide spectrum of clinical diseases in humans and are a major public health risk in several countries. Leishmania life cycle consists of an extracellular flagellated promastigote stage within the midgut of a sandfly vector, and a morphological distinct intracellular amastigote stage within macrophages of a mammalian host. This study reports the use of DNA oligonucleotide genome microarrays representing 8160 genes to analyze the mRNA expression profiles of L.
View Article and Find Full Text PDF