Objective: Sports-related concussion management in collegiate athletes has been focused on return-to-play. However, resuming schoolwork without a gradual stepwise reintroduction contributes to symptom exacerbation, delayed recovery, and adverse academic performance. Return-to-learn guidelines are limited by a lack of sensitivity in methods monitoring cognitive function.
View Article and Find Full Text PDFThe cerebellum has demonstrated a critical role during adaptation in motor learning. However, the extent to which it can contribute to the skill acquisition of complex real-world tasks remains unclear. One particularly challenging application in terms of motor activities is robotic surgery, which requires surgeons to complete complex multidimensional visuomotor tasks through a remotely operated robot.
View Article and Find Full Text PDFMotor, speech, and cognitive impairments are the most common consequences of neurological disorders. There has been an increasing interest in the use of noninvasive brain stimulation techniques such as transcranial direct current stimulation and transcranial magnetic stimulation to augment the effects of neurorehabilitation. Numerous research studies have shown that transcranial direct current stimulation and transcranial magnetic stimulation are highly promising neuromodulation tools that can work as adjuvants to standard neurorehabilitation services, including physical therapy, occupational therapy, and speech-language pathology.
View Article and Find Full Text PDFAdvances in intelligent robotic systems and brain-machine interfaces (BMI) have helped restore functionality and independence to individuals living with sensorimotor deficits; however, tasks requiring bimanual coordination and fine manipulation continue to remain unsolved given the technical complexity of controlling multiple degrees of freedom (DOF) across multiple limbs in a coordinated way through a user input. To address this challenge, we implemented a collaborative shared control strategy to manipulate and coordinate two Modular Prosthetic Limbs (MPL) for performing a bimanual self-feeding task. A human participant with microelectrode arrays in sensorimotor brain regions provided commands to both MPLs to perform the self-feeding task, which included bimanual cutting.
View Article and Find Full Text PDFUnderstanding the cortical representations of movements and their stability can shed light on improved brain-machine interface (BMI) approaches to decode these representations without frequent recalibration. Here, we characterize the spatial organization (somatotopy) and stability of the bilateral sensorimotor map of forearm muscles in an incomplete-high spinal-cord injury study participant implanted bilaterally in the primary motor and sensory cortices with Utah microelectrode arrays (MEAs). We built representation maps by recording bilateral multiunit activity (MUA) and surface electromyography (EMG) as the participant executed voluntary contractions of the extensor carpi radialis (ECR), and attempted motions in the flexor carpi radialis (FCR), which was paralytic.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
November 2021
Advances in brain-machine interfaces have helped restore function and independence for individuals with sensorimotor deficits; however, providing efficient and effective sensory feedback remains challenging. Intracortical microstimulation (ICMS) of sensorimotor brain regions is a promising technique for providing bioinspired sensory feedback. In a human participant with chronically-implanted microelectrode arrays, we provided ICMS to the primary somatosensory cortex to generate tactile percepts in his hand.
View Article and Find Full Text PDFBackground And Objectives: The restoration of touch to fingers and fingertips is critical to achieving dexterous neuroprosthetic control for individuals with sensorimotor dysfunction. However, localized fingertip sensations have not been evoked via intracortical microstimulation (ICMS).
Methods: Using a novel intraoperative mapping approach, we implanted electrode arrays in the finger areas of left and right somatosensory cortex and delivered ICMS over a 2-year period in a human participant with spinal cord injury.
Defining eloquent cortex intraoperatively, traditionally performed by neurosurgeons to preserve patient function, can now help target electrode implantation for restoring function. Brain-machine interfaces (BMIs) have the potential to restore upper-limb motor control to paralyzed patients but require accurate placement of recording and stimulating electrodes to enable functional control of a prosthetic limb. Beyond motor decoding from recording arrays, precise placement of stimulating electrodes in cortical areas associated with finger and fingertip sensations allows for the delivery of sensory feedback that could improve dexterous control of prosthetic hands.
View Article and Find Full Text PDFNeurorehabil Neural Repair
September 2020
. Concussions affect nearly 3 million people a year and are the leading cause of traumatic brain injury-related emergency department visits among youth. Evidence shows neuromotor regions are sensitive to concussive events and that motor symptoms may be the earliest clinical manifestations of neurodegenerative traumatic brain injuries.
View Article and Find Full Text PDFPersistent cognitive, affective, and motor symptoms have been associated with sports-related concussions including several neurophysiological changes in the primary motor cortex. In particular, previous research has provided some evidence of altered latencies of the corticomotor pathway and altered motor neuroplasticity. However, to date, no studies have assessed these neurophysiological metrics in a common group of athletes across different phases of injury and recovery.
View Article and Find Full Text PDFIntroduction: Children with disorders of consciousness (DOC) represent the highest end of the acquired brain injury (ABI) severity spectrum for survivors and experience a multitude of functional impairments. Current clinical management in DOC uses behavioural evaluation measures and interventions that fail to (1) describe the physiological consequences of ABI and (2) elicit functional gains. In paediatric DOC, there is a critical need to develop evidence-based interventions to promote recovery of basic responses to improve rehabilitation and aid decision-making for medical teams and caregivers.
View Article and Find Full Text PDFObjective: To systematically examine the safety and effectiveness of transcranial direct current stimulation (tDCS) interventions in pediatric motor disorders.
Data Sources: PubMed, EMBASE, Cochrane, CINAHL, Web of Science, and ProQuest databases were searched from inception to August 2018.
Study Selection: tDCS randomized controlled trials (RCTs), observational studies, conference proceedings, and dissertations in pediatric motor disorders were included.
We assessed corticomotor excitability in the primary motor cortex (M1) of participants with moderate-to-severe restless legs syndrome (RLS) symptoms using transcranial magnetic stimulation (TMS) in relation to the clinical and sleep aspects of the disease. Thirty-five participants (20 F; mean age: 59.23 ± 1.
View Article and Find Full Text PDFThe cerebellum is involved in the update of motor commands during error-dependent learning. Transcranial direct current stimulation (tDCS), a form of noninvasive brain stimulation, has been shown to increase cerebellar excitability and improve learning in motor adaptation tasks. Although cerebellar involvement has been clearly demonstrated in adaptation paradigms, a type of task that heavily relies on error-dependent motor learning mechanisms, its role during motor skill learning, a behavior that likely involves error-dependent as well as reinforcement and strategic mechanisms, is not completely understood.
View Article and Find Full Text PDFBackground: Transcranial magnetic stimulation (TMS) can be combined with functional magnetic resonance imaging (fMRI) to simultaneously manipulate and monitor human cortical responses. Although tremendous efforts have been directed at characterizing the impact of TMS on image acquisition, the influence of the scanner's static field on the TMS coil has received limited attention.
Objective/hypothesis: The aim of this study was to characterize the influence of the scanner's static field on TMS.
Study Objectives: During normal sleep several neuroplasticity changes occur, some of which are considered to be fundamental to strengthen memories. Given the evidence linking sleep to neuroplasticity, it is conceivable that individuals with chronic sleep disruption, such as patients with chronic insomnia (CI), would experience abnormalities in neuroplastic processes during daytime. Protocols testing use-dependent plasticity (UDP), one of the mechanisms underlying formation of motor memories traces, provide a sensitive measure to assess neuroplasticity in the context of motor training.
View Article and Find Full Text PDFPlasticity of synaptic connections in the primary motor cortex (M1) is thought to play an essential role in learning and memory. Human and animal studies have shown that motor learning results in long-term potentiation (LTP)-like plasticity processes, namely potentiation of M1 and a temporary occlusion of additional LTP-like plasticity. Moreover, biochemical processes essential for LTP are also crucial for certain types of motor learning and memory.
View Article and Find Full Text PDFLearning interference occurs when learning something new causes forgetting of an older memory (retrograde interference) or when learning a new task disrupts learning of a second subsequent task (anterograde interference). This phenomenon, described in cognitive, sensory, and motor domains, limits our ability to learn multiple tasks in close succession. It has been suggested that the source of interference is competition of neural resources, although the neuronal mechanisms are unknown.
View Article and Find Full Text PDFCochlear implant (CI) users demonstrate severe limitations in perceiving musical timbre, a psychoacoustic feature of sound responsible for 'tone color' and one's ability to identify a musical instrument. The reasons for this limitation remain poorly understood. In this study, we sought to examine the relative contributions of temporal envelope and fine structure for timbre judgments, in light of the fact that speech processing strategies employed by CI systems typically employ envelope extraction algorithms.
View Article and Find Full Text PDFAction observation (AO), observing another individual perform an action, has been implicated in several higher cognitive processes including forming basic motor memories. Previous work has shown that physical practice (PP) results in cortical motor representational changes, referred to as use-dependent plasticity (UDP), and that AO combined with PP potentiates UDP in both healthy adults and stroke patients. In humans, AO results in activation of the ventral premotor cortex (PMv), however, whether this PMv activation has a functional contribution to UDP is not known.
View Article and Find Full Text PDF