Exciton formation leads to J-bands in solid pentacene. Describing these exciton bands represents a challenge for both time-dependent (TD) density-functional theory (DFT) and for its semi-empirical analog, namely, for TD density-functional tight binding (DFTB) for three reasons: (i) solid pentacene and pentacene aggregates are bound only by van der Waals forces which are notoriously difficult to describe with DFT and DFTB, (ii) the proper description of the long-range coupling between molecules, needed to describe Davydov splitting, is not easy to include in TD-DFT with traditional functionals and in TD-DFTB, and (iii) mixing may occur between local and charge transfer excitons, which may, in turn, require special functionals. We assess how far TD-DFTB has progressed toward a correct description of this type of exciton by including both a dispersion correction for the ground state and a range-separated hybrid functional for the excited state and comparing the results against corresponding TD-CAM-B3LYP/CAM-B3LYP+D3 results.
View Article and Find Full Text PDFExfoliation of large-area monolayers is important for fundamental research and technological implementation of transition-metal dichalcogenides. Various techniques have been explored to increase the exfoliation yield, but little is known about the underlying mechanism at the atomic level. Here, we demonstrate gold-assisted mechanical exfoliation of monolayer molybdenum disulfide, up to a centimeter scale.
View Article and Find Full Text PDFHeterostructures based on atomic monolayers are emerging as leading materials for future energy efficient and multifunctional electronics. Due to the single atom thickness of monolayers, their properties are strongly affected by interactions with the external environment. We develop a model for interface thermal conductance (ITC) in an atomic monolayer van der Waals bonded to a disordered substrate.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2015
Thin films formed by atomic layer deposition (ALD) are being examined for a variety of chemical protection and diffusion barrier applications, yet their stability in various fluid environments is not well characterized. The chemical stability of titania and alumina thin films in air, 18 MΩ water, 1 M KCl, 1 M HNO3, 1 M H2SO4, 1 M HCl, 1 M KOH, and mercury was studied. Films were deposited at 150 °C using trimethylaluminum-H2O and tetrakis(dimethylamido)titanium-H2O chemistries for alumina and titania, respectively.
View Article and Find Full Text PDF