Lipases present biotechnological applications in various industrial sectors due to their ability to perform multiple biochemical reactions. However, the high cost sometimes discourages their potential uses, besides the extensive number of patents involving them. One of the most utilized and researched lipases is Candida antarctica lipase B (CALB), known for its versatility, encompassing enantioselectivity, thermostability, and a wide range of substrates.
View Article and Find Full Text PDFEnzymes have been highly demanded in diverse applications such as in the food, pharmaceutical, and industrial fuel sectors. Thus, in silico bioprospecting emerges as an efficient strategy for discovering new enzyme candidates. A new program called ProspectBIO was developed for this purpose as it can find non-annotated sequences by searching for homologs of a model enzyme directly in genomes.
View Article and Find Full Text PDFcontains seeds with a high oil content, suitable for biodiesel production. After oil extraction, the remaining mass can be a rich source of enzymes. However, data from the literature describing physicochemical characteristics for a monomeric esterase from the seed did not fit the electrostatic catapult model for esterases/lipases.
View Article and Find Full Text PDFThis work aimed the application of a new biocatalyst for biodiesel production from residual agro-industrial fatty acids. A recombinant Pichia pastoris displaying lipase from Rhizomucor miehei (RML) on the cell surface, using the PIR-1 anchor system, were prepared using glycerol as the carbon source. The biocatalyst, named RML-PIR1 showed optimum temperature of 45 °C (74.
View Article and Find Full Text PDFThe use of the methylotrophic yeast Pichia pastoris (Komagataella phaffi) to produce heterologous proteins has been largely reported. However, investigations addressing the potential of this yeast to produce bulk chemicals are still scarce. In this study, we have studied the use of P.
View Article and Find Full Text PDF