Publications by authors named "Gabriela Bonassa"

Improper disposal of animal waste is responsible for several environmental problems, causing eutrophication of lakes and rivers, nutrient overload in the soil, and the spread of pathogenic organisms. Despite the potential to cause adverse ecological damage, animal waste can be a valuable source of resources if incorporated into a circular concept. In this sense, new approaches focused on recovery and reuse as substitutes for traditional processes based on removing contaminants in animal manure have gained attention from the scientific community.

View Article and Find Full Text PDF

The anaerobic ammonium oxidation (anammox) process has attracted significant attention as an economic, robustness, and sustainable method for the treatment of nitrogen (N)-rich wastewater. Anammox bacteria (AnAOB) coexist with other microorganisms, and particularly with ammonia-oxidizing bacteria (AOB) and/or heterotrophic bacteria (HB), in symbiosis in favor of the substrate requirement (ammonium and nitrite) of the AnAOB being supplied by these other organisms. The dynamics of these microbial communities have a significant effect on the N-removal performance, but the corresponding metabolic pathways are still not fully understood.

View Article and Find Full Text PDF

The application of the circular economy concept should utilize the cycles of nature to preserve materials, energy and nutrients for economic use. A full-scale pig farm plant was developed and validated, showing how it is possible to integrate a circular economy concept into a wastewater treatment system capable of recovering energy, nutrients and enabling water reuse. A low-cost swine wastewater treatment system consisting of several treatment modules such as solid-liquid separation, anaerobic digestion, biological nitrogen removal by nitrification/denitrification and physicochemical phosphorus removal and recovery was able to generate 1880.

View Article and Find Full Text PDF

Organic carbon can affect the biological nitrogen removal process since the Anammox, heterotrophic and denitrifying bacteria have different affinities and feedback in relation to carbon/nitrogen ratio. Therefore, we reviewed the wastewater carbon concentration, its biodegradability and bioavailability to choose the appropriate nitrogen removal process between conventional (nitrification-denitrification) and Anammox-based process (i.e.

View Article and Find Full Text PDF

A collection of kinetic models to explore the bacteria pathway inhibition by high-ammonia during deammonification process was fitted. The main goal was to determine the substrate concentration to operate the deammonification with efficiency, performance and low impact to ANAMMOX and ammonia-oxidizing bacteria (AOB) by substrate. A new mathematical model was created to describe the deammonification behavior, since the empirical theoretical models showed inconsistent parameters to describe the process.

View Article and Find Full Text PDF

The performance of a deammonification reactor fed with increasing nitrogen loading rates (NLR) was evaluated. The digestate from a continuous stirred tank reactor (CSTR) treating sludge from a swine production unit was diluted to provide different ammonia concentrations. The biomass samples from the end of each experimental phase were analyzed for microorganism community evaluation.

View Article and Find Full Text PDF

This work aims to evaluate the adsorption potential of bentonite and sugarcane bagasse clay for the reduction of free fatty acids in cooking oil through batch technique, experimental planning with different operating conditions (temperature, adsorbent mass and agitation). After were carried out kinetic studies and thermodynamic studies. Thus, both adsorbents were characterized by nitrogen dispersion, scanning electron microscopy with coupled energy dispersion spectroscopy.

View Article and Find Full Text PDF

Since industrial wastes are increasing, the development of studies to find ways for their use is urgent. Waste cooking oil is an important source for the production of biodiesel, one of the main biofuels in Brazil. However, during cooking, the oil undergoes conditions that change its properties and decrease its quality, such as its acidity value.

View Article and Find Full Text PDF