Choline chloride (ChCl) is used extensively as a hydrogen bond donor in deep eutectic solvents (DESs). However, determining its melting properties experimentally is challenging due to decomposition upon melting, leading to widely varying literature values. Accurate melting properties are crucial for understanding the solid-liquid phase behavior of ChCl-containing DESs.
View Article and Find Full Text PDFAlchemical free energy calculations via molecular dynamics have been applied to obtain thermodynamic properties related to solid-liquid equilibrium conditions, such as melting points. In recent years, the pseudo-supercritical path (PSCP) method has proved to be an important approach to melting point prediction due to its flexibility and applicability. In the present work, we propose improvements to the PSCP alchemical cycle to make it more compact and efficient through a concerted evaluation of different potential energies.
View Article and Find Full Text PDFAlchemical free energy calculations via molecular dynamics have been widely used to obtain thermodynamic properties related to protein-ligand binding and solute-solvent interactions. Although soft-core modeling is the most common approach, the linear basis function (LBF) methodology [Naden, L. N.
View Article and Find Full Text PDF