Publications by authors named "Gabriela A Merino"

Ensembl (www.ensembl.org) is an open platform integrating publicly available genomics data across the tree of life with a focus on eukaryotic species related to human health, agriculture and biodiversity.

View Article and Find Full Text PDF

Ensembl (https://www.ensembl.org) is a freely available genomic resource that has produced high-quality annotations, tools, and services for vertebrates and model organisms for more than two decades.

View Article and Find Full Text PDF

Ensembl (https://www.ensembl.org) has produced high-quality genomic resources for vertebrates and model organisms for more than twenty years.

View Article and Find Full Text PDF

Motivation: Experimental testing and manual curation are the most precise ways for assigning Gene Ontology (GO) terms describing protein functions. However, they are expensive, time-consuming and cannot cope with the exponential growth of data generated by high-throughput sequencing methods. Hence, researchers need reliable computational systems to help fill the gap with automatic function prediction.

View Article and Find Full Text PDF

Motivation: The Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2) has recently emerged as the responsible for the pandemic outbreak of the coronavirus disease 2019. This virus is closely related to coronaviruses infecting bats and Malayan pangolins, species suspected to be an intermediate host in the passage to humans. Several genomic mutations affecting viral proteins have been identified, contributing to the understanding of the recent animal-to-human transmission.

View Article and Find Full Text PDF
Article Synopsis
  • Sunflower germplasm collections play a crucial role in expanding the genetic diversity of commercial hybrids and mitigating climate-related risks, with major collections from INTA (Argentina), INRA (France), and USDA-UBC (USA-Canada).
  • A mixed genotyping strategy was used to create a comprehensive dataset of 11,834 single nucleotide polymorphisms (SNPs) across these collections, finding moderate genetic diversity and evidence of population structure.
  • While different methods suggested varying optimal numbers of subpopulations (between 6 to 12), distinct patterns of linkage disequilibrium (LD) were observed across chromosomes, marking this study as significant in understanding sunflower genomic diversity.
View Article and Find Full Text PDF

Alternative splicing alterations have been widely related to several human diseases revealing the importance of their study for the success of translational medicine. Differential splicing (DS) occurrence has been mainly analyzed through exon-based approaches over RNA-seq data. Although these strategies allow identifying differentially spliced genes, they ignore the identity of the affected gene isoforms which is crucial to understand the underlying pathological processes behind alternative splicing changes.

View Article and Find Full Text PDF

The availability of large-scale repositories and integrated cancer genome efforts have created unprecedented opportunities to study and describe cancer biology. In this sense, the aim of translational researchers is the integration of multiple omics data to achieve a better identification of homogeneous subgroups of patients in order to develop adequate diagnostic and treatment strategies from the personalized medicine perspective. So far, existing integrative methods have grouped together omics data information, leaving out individual omics data phenotypic interpretation.

View Article and Find Full Text PDF

Over the last few years, RNA-seq has been used to study alterations in alternative splicing related to several diseases. Bioinformatics workflows used to perform these studies can be divided into two groups, those finding changes in the absolute isoform expression and those studying differential splicing. Many computational methods for transcriptomics analysis have been developed, evaluated and compared; however, there are not enough reports of systematic and objective assessment of processing pipelines as a whole.

View Article and Find Full Text PDF

Targeted sequencing (TS) is growing as a screening methodology used in research and medical genetics to identify genomic alterations causing human diseases. In general, a list of possible genomic variants is derived from mapped reads through a variant calling step. This processing step is usually based on variant coverage, although it may be affected by several factors.

View Article and Find Full Text PDF

Motivation: The PAM50 classifier is used to assign patients to the highest correlated breast cancer subtype irrespectively of the obtained value. Nonetheless, all subtype correlations are required to build the risk of recurrence (ROR) score, currently used in therapeutic decisions. Present subtype uncertainty estimations are not accurate, seldom considered or require a population-based approach for this context.

View Article and Find Full Text PDF