Potato is the most important non-cereal crop worldwide, and, yet, genetic gains in potato have been traditionally delayed by the crop's biology, mostly the genetic heterozygosity of autotetraploid cultivars and the intricacies of the reproductive system. Novel site-directed genetic modification techniques provide opportunities for designing climate-smart cultivars, but they also pose new possibilities (and challenges) for breeding potato. As potato species show a remarkable reproductive diversity, and their ovules have a propensity to develop apomixis-like phenotypes, tinkering with reproductive genes in potato is opening new frontiers in potato breeding.
View Article and Find Full Text PDFCultivated potato (Solanum tuberosum L.) is one of the most important staple food crops worldwide. Its tetraploid and highly heterozygous nature poses a great challenge to its basic research and trait improvement through traditional mutagenesis and/or crossbreeding.
View Article and Find Full Text PDFAspartic proteases are proteolytic enzymes widely distributed in living organisms and viruses. Although they have been extensively studied in many plant species, they are poorly described in potatoes. The present study aimed to identify and characterize aspartic proteases.
View Article and Find Full Text PDFPotato ( L.) is a crop of world importance that produces tubers of high nutritional quality. It is considered one of the promising crops to overcome the challenges of poverty and hunger worldwide.
View Article and Find Full Text PDFThis is the first report describing the genetic transformation of Diaporthe caulivora, the soybean stem canker fungus. A simple and 100% efficient protocol of Agrobacterium tumefaciens-mediated transformation used mycelium as starting material and the hygromycin B resistance and green fluorescent protein (GFP) as a selection and reporter agents, respectively. All transgenic isolates were mitotically stable in two independent experiments and polymerase chain reaction with hygromycin B resistance primers confirmed successful T-DNA integration into the fungal genome.
View Article and Find Full Text PDFPolyphenol Oxidases (PPOs) catalyze the conversion of phenolic substrates to quinones, leading to the formation of dark-colored precipitates in fruits and vegetables. This process, known as enzymatic browning, is the cause of undesirable changes in organoleptic properties and the loss of nutritional quality in plant-derived products. In potato ( L.
View Article and Find Full Text PDFBackground: Cold-induced sweetening (CIS) is the accumulation of sucrose and reducing sugars in potato tubers at low temperatures. This process is central for the potato processing industry. During potato chip and French fry production, reducing sugars participate in the Maillard reaction to produce dark pigmented products not acceptable to consumers.
View Article and Find Full Text PDFPotato (Solanum tuberosum L.) is the world's most important non-grain food crop and is central to global food security. It is clonally propagated, highly heterozygous, autotetraploid, and suffers acute inbreeding depression.
View Article and Find Full Text PDF