Publications by authors named "Gabriela A L Vieira"

The combination of different microorganisms and their metabolisms makes the use of microbial consortia in bioremediation processes a useful approach. In this sense, this study aimed at structuring and selecting a marine microbial consortium for Remazol Brilliant Blue R (RBBR) detoxification and decolorization. Experimental design was applied to improve the culture conditions, and metatranscriptomic analysis to understand the enzymatic pathways.

View Article and Find Full Text PDF

Extremophiles comprise microorganisms that are able to grow and thrive in extreme environments, including in an acidic or alkaline pH, high or low temperatures, high concentrations of pollutants, and salts, among others. These organisms are promising for environmental biotechnology due to their unique physiological and enzymatic characteristics, which allow them to survive in harsh environments. Due to the stability and persistence of these microorganisms under adverse environmental conditions, they can be used for the bioremediation of environments contaminated with extremely recalcitrant pollutants.

View Article and Find Full Text PDF

Marine-derived fungi are relevant genetic resources for bioremediation of saline environments/processes. Among the five fungi recovered from marine sponges able to degrade pyrene (Py) and benzo[a]pyrene (BaP), Tolypocladium sp. strain CBMAI 1346 and Xylaria sp.

View Article and Find Full Text PDF

The hemoflagellate protozoan, Trypanosoma cruzi, mainly transmitted by triatomine insects through blood transfusion or from mother-to-child, causes Chagas' disease. This is a serious parasitic disease that occurs in Latin America, with considerable social and economic impact. Nifurtimox and benznidazole, drugs indicated for treating infected persons, are effective in the acute phase, but poorly effective during the chronic phase.

View Article and Find Full Text PDF

Pyrene and benzo[a]pyrene (BaP) are high molecular weight polycyclic aromatic hydrocarbons (PAHs) recalcitrant to microbial attack. Although studies related to the microbial degradation of PAHs have been carried out in the last decades, little is known about degradation of these environmental pollutants by fungi from marine origin. Therefore, this study aimed to select one PAHs degrader among three marine-derived basidiomycete fungi and to study its pyrene detoxification/degradation.

View Article and Find Full Text PDF

In the present study, the biotechnological potential of the marine-derived fungus Peniophora sp. CBMAI 1063 was investigated in relation to Reactive Black 5 (RB5) dye decolorization and degradation using an integrated statistical design composed of Plackett-Burman design (P&B), central composite design (CCD), and response surface methodology (RSM). RB5 dye was effectively decolorized (94 %) in saline conditions, without any detection of mutagenic compounds, and simultaneously, 57 % of total organic carbon (TOC) was removed in 7 days.

View Article and Find Full Text PDF

The ocean is considered to be a great reservoir of biodiversity. Microbial communities in marine environments are ecologically relevant as intermediaries of energy, and play an important role in nutrient regeneration cycles as decomposers of dead and decaying organic matter. In this sense, marine-derived fungi can be considered as a source of enzymes of industrial and/or environmental interest.

View Article and Find Full Text PDF