Publications by authors named "Gabriel Zarca"

In this work, polymeric membranes functionalized with ionic liquids (ILs) and exfoliated graphene nanoplatelets (xGnP) were developed and characterized. These membranes based on graphene ionanofluids (IoNFs) are promising materials for gas separation. The stability of the selected IoNFs in the polymer membranes was determined by thermogravimetric analysis (TGA).

View Article and Find Full Text PDF

Membrane technology can play a very influential role in the separation of the constituents of HFC refrigerant gas mixtures, which usually exhibit azeotropic or near-azeotropic behavior, with the goal of promoting the reuse of value-added compounds in the manufacture of new low-global warming potential (GWP) refrigerant mixtures that abide by the current F-gases regulations. In this context, the selective recovery of difluorometane (R32, GWP = 677) from the commercial blend R410A (GWP = 1924), an equimass mixture of R32 and pentafluoroethane (R125, GWP = 3170), is sought. To that end, this work explores for the first time the separation performance of novel mixed-matrix membranes (MMMs) functionalized with ioNanofluids (IoNFs) consisting in a stable suspension of exfoliated graphene nanoplatelets (xGnP) into a fluorinated ionic liquid (FIL), 1-ethyl-3-methylpyridinium perfluorobutanesulfonate ([CCpy][CFSO]).

View Article and Find Full Text PDF