Publications by authors named "Gabriel Yaxal Ponce-Soto"

Background: Access to sample-level metadata is important when selecting public metagenomic sequencing datasets for reuse in new biological analyses. The Standards, Precautions, and Advances in Ancient Metagenomics community (SPAAM, https://spaam-community.org) has previously published AncientMetagenomeDir, a collection of curated and standardised sample metadata tables for metagenomic and microbial genome datasets generated from ancient samples.

View Article and Find Full Text PDF

Background: In bacteria, pan-genomes are the result of an evolutionary "tug of war" between selection and horizontal gene transfer (HGT). High rates of HGT increase the genetic pool and the effective population size (N), resulting in open pan-genomes. In contrast, selective pressures can lead to local adaptation by purging the variation introduced by HGT and mutation, resulting in closed pan-genomes and clonal lineages.

View Article and Find Full Text PDF

PAL5 (GDI) is an endophytic bacterium with potential biotechnological applications in industry and agronomy. The recent description of its complete genome and its principal metabolic enzymes suggests that glucose metabolism is accomplished through the pentose phosphate pathway (PPP); however, the enzymes participating in this pathway have not yet been characterized in detail. The objective of the present work was to clone, purify, and biochemically and physicochemically characterize glucose-6-phosphate dehydrogenase (G6PD) from GDI.

View Article and Find Full Text PDF

is a metabolically versatile bacterium and also an important opportunistic pathogen. It has a remarkable genomic structure since the genetic information encoding its pathogenicity-related traits belongs to its core-genome while both environmental and clinical isolates are part of the same population with a highly conserved genomic sequence. Unexpectedly, considering the high level of sequence identity and homologue gene number shared between different isolates, the presence of specific essential genes of the two type strains PAO1 and PA14 has been reported to be highly variable.

View Article and Find Full Text PDF

Pseudomonas aeruginosa is a widely distributed environmental bacterium but is also an opportunistic pathogen that represents an important health hazard due to its high intrinsic antibiotic resistance and its production of virulence factors. The genetic structure of P. aeruginosa populations using whole genome sequences shows the existence of three clades, one of which (PA7 clade) has a higher genetic diversity.

View Article and Find Full Text PDF

The definition of bacterial essential genes has been widely pursued using different approaches. Their study has impacted several fields of research such as synthetic biology, the construction of bacteria with minimal chromosomes, the search for new antibiotic targets, or the design of strains with biotechnological applications. Bacterial genomes are mosaics that only share a small subset of gene-sequences (core genome) even among members of the same species.

View Article and Find Full Text PDF

Bacteria have numerous strategies to interact with themselves and with their environment, but genes associated with these interactions are usually cataloged as pathogenic. To understand the role that these genes have not only in pathogenesis but also in bacterial interactions, we compared the genomes of eight bacteria from human-impacted environments with those of free-living bacteria from the Cuatro Ciénegas Basin (CCB), a relatively pristine oligotrophic site. Fifty-one genomes from CCB bacteria, including Pseudomonas, Vibrio, Photobacterium and Aeromonas, were analyzed.

View Article and Find Full Text PDF

Rhamnolipids produced by Pseudomonas aeruginosa are biosurfactants with a high biotechnological potential, but their extensive commercialization is limited by the potential virulence of P. aeruginosa and by restrictions in producing these surfactants in heterologous hosts. In this work, we report the characterization of P.

View Article and Find Full Text PDF

Antagonistic interactions are frequently observed among bacteria in the environment and result in complex networks, which could promote co-existence, and therefore promote biodiversity. We analysed interactions of aquatic bacteria isolated by their ability to grow in Pseudomonas isolation agar from Churince, Cuatro Ciénegas, Mexico. In the resulting network, highly antagonistic and highly sensitive strains could be distinguished, forming a largely hierarchical structure.

View Article and Find Full Text PDF