Publications by authors named "Gabriel W Castellanos"

The interaction between molecular electronic transitions and electromagnetic fields can be enlarged to the point where distinct hybrid light-matter states, polaritons, emerge. The photonic contribution to these states results in increased complexity as well as an opening to modify the photophysics and photochemistry beyond what normally can be seen in organic molecules. It is today evident that polaritons offer opportunities for molecular photochemistry and photophysics, which has caused an ever-rising interest in the field.

View Article and Find Full Text PDF
Article Synopsis
  • The study presents the first experimental evidence of exciton-polariton (EP) condensation at room temperature, achieved through a bound state in the continuum (BIC).
  • This was accomplished by combining stable excitons from an organic dye with long-lived BICs in a silicon nanoparticle metasurface.
  • The high stability of the BIC reduces radiation loss, allowing EPs to thermalize and condense at a significantly lower energy threshold (less than 5 μJ cm), which is much lower than what's seen in weaker coupling systems.
View Article and Find Full Text PDF

Plasmonic sensors rely on optical resonances in metal nanoparticles and are typically limited by their broad spectral features. This constraint is particularly taxing for optical hydrogen sensors, in which hydrogen is absorbed inside optically-lossy Pd nanostructures and for which state-of-the-art detection limits are only at the low parts-per-million (ppm) range. Here, we overcome this limitation by inversely designing a plasmonic metasurface based on a periodic array of Pd nanoparticles.

View Article and Find Full Text PDF

Plasmonic particle arrays have remarkable optical properties originating from their collective behavior, which results in resonances with narrow line widths and enhanced electric fields extending far into the surrounding medium. Such resonances can be exploited for applications in strong light-matter coupling, sensing, light harvesting, nonlinear nanophotonics, lasing, and solid-state lighting. However, as the lattice constants associated with plasmonic particle arrays are on the order of their resonance wavelengths, mapping the interaction between point dipoles and plasmonic particle arrays cannot be done with diffraction-limited methods.

View Article and Find Full Text PDF

The excitation of localized surface plasmon resonances in Au and Ag colloids can be used to drive the synthesis of complex nanostructures, such as anisotropic prisms, bipyramids, and core@shell nanoparticles. Yet, after two decades of research, it is challenging to paint a complete picture of the mechanisms driving such light-induced chemical transformations. In particular, whereas the injection of hot charge carriers from the metal nanoparticles is usually proposed as the dominant mechanism, the contribution of plasmon-induced heating can often not be neglected.

View Article and Find Full Text PDF