Publications by authors named "Gabriel Vigueras-Ramirez"

The basidiomycete fungus is able to grow in the fungus garden of leaf-cutter ants. This mutualistic interaction has driven the evolutionary adaptation of , shaping its metabolism to produce enzymes adept at lignocellulosic biomass degradation. In this study, we undertook the comprehensive sequencing, assembly, and functional annotation of the genome of strain LEU18496, mutualistic fungus of the .

View Article and Find Full Text PDF
Article Synopsis
  • Bacterial cellulose (BC) is a cool material that can be used for fancy products because it's safe for our bodies and has good properties.
  • Scientists tested four different types of growth solutions to see which one made the most BC, and they found that yeast nitrogen base and fertilizer worked the best.
  • Using fertilizer instead of yeast nitrogen increased the BC production by 29%, and the new way of making BC is cheaper and more reliable because it uses a mix of microbes instead of just one type.
View Article and Find Full Text PDF

Suitability of microalgae valorization mainly depends on its biochemical composition. Overall, among all microalgal derivatives, pigments currently stand out as the major added-value component. While it is well recognized that microalgal growth conditions strongly affect biomass composition, final tuning of already grown microalgae has been scarcely studied.

View Article and Find Full Text PDF

The genera Bacillus belongs to the group of microorganisms that are known as plant growth-promoting bacteria, their metabolism has evolved to produce molecules that benefit the growth of the plant, and the production of 3-indole acetic acid (IAA) is part of its secondary metabolism. In this work, Bacillus subtilis was cultivated in a bioreactor to produce IAA using propionate and glucose as carbon sources in an M9-modified media; in both cases, tryptophan was added as a co-substrate. The yield of IAA using propionate is 17% higher compared to glucose.

View Article and Find Full Text PDF

A native cyanobacterial strain, Desertifilum tharense UAM-C/S02, was studied as a possible C-phycocyanin (C-PC) producer. Photosynthetic activity (PA) assays through oxygen production determined the proper temperature and range of irradiances to be tested in a stirred tank photobioreactor. The highest C-PC productivity (97 mg L d), with a yield of 86.

View Article and Find Full Text PDF

The photoautotrophic poly(3-hydroxybutyrate) (PHB) production by cyanobacteria is an attractive option as it only requires CO and light. In this work, a new wild-type strain producing PHB, Synechococcus elongatus UAM-C/S03, was identified using a polyphasic approach. The strain was cultured in a photobioreactor operated under N-sufficiency conditions at different pH values (7 to 11) and fed with CO on demand.

View Article and Find Full Text PDF

3-Indoleacetic acid (IAA) is a phytohormone that promotes plant root growth, improving the use of nutrients and crop yield and it is been reported that bacteria of the genus Bacillus are capable of producing this phytohormone under various growth conditions. Considering this metabolic capability, in this work, Bacillus subtilis was cultivated in five different carbon sources: glucose, acetate, propionate, citrate and glycerol; and l-tryptophan (Trp) was used as an inducer for the IAA production. Based on the experimental results it was observed that the highest growth rate was achieved using glucose as a carbon source (μ = 0.

View Article and Find Full Text PDF

The aim of this study was to characterize the growth of the fungus Leucoagaricus gongylophorus LEU18496, isolated from the fungus garden of the nest of leaf cutter ants Atta mexicana. The fungus garden was cultivated in an artificial laboratory nest and the fungus further grown in submerged (SmC) and solid state (SSC) cultures with sugarcane bagasse, grass or model substrates containing CM-cellulose, xylan or lignin. The CO production rate with grass in SmC (Vmax 34.

View Article and Find Full Text PDF

Pulque is a typical fermented alcoholic beverage of central Mexico, produced from the nectar of maguey agave plants. Production systems are largely artisanal, with inadequate hygiene conditions and exposure to multiple contamination sources. No data exist on pulque microbiological safety and the behavior of pathogenic microorganisms in agave nectar and pulque.

View Article and Find Full Text PDF