The use of cytokines for immunotherapy shows clinical efficacy but is frequently accompanied by severe adverse events caused by excessive and systemic immune activation. Here, we set out to address these challenges by engineering a fusion protein of a single, potency-reduced, IL15 mutein and a PD1-specific antibody (anti-PD1-IL15m). This immunocytokine was designed to deliver PD1-mediated, avidity-driven IL2/15 receptor stimulation to PD1 tumor-infiltrating lymphocytes (TIL) while minimally affecting circulating peripheral natural killer (NK) cells and T cells.
View Article and Find Full Text PDFAs indicated by its name, V-domain Ig suppressor of T cell activation (VISTA) is thought to serve primarily as an inhibitory protein that limits immune responses. VISTA antibodies can dampen the effects of several concomitantly elicited activation signals, including TCR and TLR activation, but it is currently unclear if VISTA agonism could singly affect immune cell biology. In this study, we discovered two novel VISTA antibodies and characterized their effects on human peripheral blood mononuclear cells by scRNA/CITE-seq.
View Article and Find Full Text PDFAs a result of the growing burden of tumors and chronic infections, manipulating CD8 T cell responses for clinical use has become an important goal for immunologists. In this article, we show that dendritic cell (DC) immunization coupled with relatively early (days 1-3) or late (days 4-6) administration of enhanced IL-2 signals increase peak effector CD8 T cell numbers, but only early IL-2 signals enhance memory numbers. IL-2 signals delivered at relatively late time points drive terminal differentiation and marked Bim-mediated contraction and do not increase memory T cell numbers.
View Article and Find Full Text PDFMemory CD8 T cells provide protection to immune hosts by eliminating pathogen-infected cells during re-infection. While parameters influencing the generation of primary (1°) CD8 T cells are well established, the factors controlling the development of secondary (2°) CD8 T cell responses remain largely unknown. Here, we address the mechanisms involved in the generation and development of 2° memory (M) CD8 T cells.
View Article and Find Full Text PDFAdv Exp Med Biol
December 2015
Antigen-specific CD8 T cells provide an important protective role in response to infection by viruses, intracellular bacteria, and parasites. Pathogen-specific CD8 T cells render this protection by undergoing robust expansion in numbers while gaining the ability to produce cytokines and cytolytic machinery. Creating optimal CD8 T cell responses to infection can be critical for raising sufficient armament to provide protection against invading intracellular pathogens.
View Article and Find Full Text PDFT cell Ig and mucin domain (Tim) 3 is a surface molecule expressed throughout the immune system that can mediate both stimulatory and inhibitory effects. Previous studies have provided evidence that Tim-3 functions to enforce CD8 T cell exhaustion, a dysfunctional state associated with chronic stimulation. In contrast, the role of Tim-3 in the regulation of CD8 T cell responses to acute and transient stimulation remains undefined.
View Article and Find Full Text PDFTCR ligation and co-stimulation induce cellular division; however, optimal accumulation of effector CD8 T cells requires direct inflammatory signaling by signal 3 cytokines, such as IL-12 or type I IFNs. Although in vitro studies suggest that IL-12/type I IFN may enhance T cell survival or early proliferation, the mechanisms underlying optimal accumulation of CD8 T cells in vivo are unknown. In particular, it is unclear if disparate signal 3 cytokines optimize effector CD8 T cell accumulation by the same mechanism and how these inflammatory cytokines, which are transiently produced early after infection, affect T cell accumulation many days later at the peak of the immune response.
View Article and Find Full Text PDFDuring reinfection, high-affinity IgG Abs form complexes with both soluble Ag and Ag displayed on the surface of infected cells. These interactions regulate cellular activation of both innate cells and B cells, which express specific combinations of activating FcγRs (FcγRI, FcγRIII, FcγRIV) and/or the inhibitory FcγR (FcγRIIB). Direct proof for functional expression of FcγR by Ag-specific CD8 T cells is lacking.
View Article and Find Full Text PDFTrafficking of CD8 T cells, in both the steady-state and during episodes of infection or inflammation, is a highly dynamic process and involves a variety of receptor-ligand interactions. A thorough, mechanistic understanding of how this process is regulated could potentially lead to disease prevention strategies, through either enhancing (for infectious diseases or tumors) or limiting (for autoimmunity) recruitment of antigen-specific CD8 T cells to areas of tissue inflammation. As CD8 T cells transition from naive to effector to memory cells, changes in gene expression will ultimately dictate anatomical localization of these cells in vivo.
View Article and Find Full Text PDFRepeated infections and experimental prime-boost regimens frequently result in the generation of secondary (2°) CD8(+) T-cell responses. In contrast to primary (1°) CD8(+) T cells, the parameters that influence the abundance and phenotype of 2° effector and memory CD8(+) T-cell populations are largely unknown. Here, we analyze the impact of different booster infections, Ag curtailment, and systemic inflammation on the quality and quantity of secondary CD8(+) T-cell responses.
View Article and Find Full Text PDF