Following transcription, tRNAs undergo a series of processing and modification events to become functional adaptors in protein synthesis. Eukaryotes have also evolved intracellular transport systems whereby nucleus-encoded tRNAs may travel out and into the nucleus. In trypanosomes, nearly all tRNAs are also imported from the cytoplasm into the mitochondrion, which lacks tRNA genes.
View Article and Find Full Text PDFEvery type of nucleic acid in cells undergoes programmed chemical post-transcriptional modification. Generally, modification enzymes use substrates derived from intracellular metabolism, one exception is queuine (q)/queuosine (Q), which eukaryotes obtain from their environment; made by bacteria and ultimately taken into eukaryotic cells via currently unknown transport systems. Here, we use a combination of molecular, cell biology and biophysical approaches to show that in Trypanosoma brucei tRNA Q levels change dynamically in response to concentration variations of a sub-set of amino acids in the growth media.
View Article and Find Full Text PDFA signature of most eukaryotic cells is the presence of intricate membrane systems. Intracellular organization presumably evolved to provide order, and add layers for regulation of intracellular processes; compartmentalization also forcibly led to the appearance of sophisticated transport systems. With nucleus-encoded tRNAs, it led to the uncoupling of tRNA synthesis from many of the maturation steps it undergoes.
View Article and Find Full Text PDFTransfer RNA modifications play pivotal roles in protein synthesis. N6-threonylcarbamoyladenosine (t6A) and its derivatives are modifications found at position 37, 3΄-adjacent to the anticodon, in tRNAs responsible for ANN codons. These modifications are universally conserved in all domains of life.
View Article and Find Full Text PDFDiphenyl ditelluride (DPDT) is a potential prototype for the development of novel biologically active molecules. Thus, it is important to evaluate the toxic effects of this compound. In the present study, we evaluated the cytotoxic, genotoxic and mutagenic properties of DPDT in Chinese hamster fibroblast (V79) cells, in strains of the yeast Saccharomyces cerevisiae both proficient and deficient in several DNA repair pathways and in Salmonella typhimurium.
View Article and Find Full Text PDF