Publications by authors named "Gabriel S Redner"

Nonaligning self-propelled particles with purely repulsive excluded volume interactions undergo athermal motility-induced phase separation into a dilute gas and a dense cluster phase. Here, we use enhanced sampling computational methods and analytic theory to examine the kinetics of formation of the dense phase. Despite the intrinsically nonequilibrium nature of the phase transition, we show that the kinetics can be described using an approach analogous to equilibrium classical nucleation theory, governed by an effective free energy of cluster formation with identifiable bulk and surface terms.

View Article and Find Full Text PDF

We consider a phenomenological continuum theory for an extensile, overdamped active nematic liquid crystal, applicable in the dense regime. Constructed from general principles, the theory is universal, with parameters independent of any particular microscopic realization. We show that it exhibits two distinct instabilities, one of which arises due to shear forces, and the other due to active torques.

View Article and Find Full Text PDF

The study of liquid crystals at equilibrium has led to fundamental insights into the nature of ordered materials, as well as to practical applications such as display technologies. Active nematics are a fundamentally different class of liquid crystals, driven away from equilibrium by the autonomous motion of their constituent rod-like particles. This internally generated activity powers the continuous creation and annihilation of topological defects, which leads to complex streaming flows whose chaotic dynamics seem to destroy long-range order.

View Article and Find Full Text PDF

Motivated by recent experiments, we study a system of self-propelled colloids that experience short-range attractive interactions and are confined to a surface. Using simulations we find that the phase behavior for such a system is reentrant as a function of activity: phase-separated states exist in both the low- and high-activity regimes, with a homogeneous active fluid in between. To understand the physical origins of reentrance, we develop a kinetic model for the system's steady-state dynamics whose solution captures the main features of the phase behavior.

View Article and Find Full Text PDF

We examine a minimal model for an active colloidal fluid in the form of self-propelled Brownian spheres that interact purely through excluded volume with no aligning interaction. Using simulations and analytic modeling, we quantify the phase diagram and separation kinetics. We show that this nonequilibrium active system undergoes an analog of an equilibrium continuous phase transition, with a binodal curve beneath which the system separates into dense and dilute phases whose concentrations depend only on activity.

View Article and Find Full Text PDF