Publications by authors named "Gabriel Rodrigues Coutinho Pereira"

Article Synopsis
  • * The disease is linked to mutations in the frataxin (FXN) gene that disrupt iron regulation within cells, causing harmful iron buildup and oxidative stress that lead to neuron death.
  • * A study analyzed 226 FXN genetic variants, confirming a majority have harmful effects on protein function, and created a 3D model of FXN to understand significant mutations (I154F and W155R), revealing they disrupt essential protein interactions critical for its maturation. *
View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is the most prevalent motor neuron disorder in adults, which is associated with a highly disabling condition. To date, ALS remains incurable, and the only drugs approved by the FDA for its treatment confer a limited survival benefit. Recently, SOD1 binding ligand 1 (SBL-1) was shown to inhibit in vitro the oxidation of a critical residue for SOD1 aggregation, which is a central event in ALS-related neurodegeneration.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the leading cause of dementia worldwide. Despite causing great social and economic impact, there is currently no cure for AD. The most effective therapy to manage AD symptoms is based on acetylcholinesterase inhibitors (AChEi), from which rivastigmine presented numerous benefits.

View Article and Find Full Text PDF

Background: Distinct N-acetyltransferase 2 (NAT2) slow acetylators genotypes have been associated with a higher risk to develop anti-tuberculosis drug-induced hepatotoxicity (DIH). However, studies have not pointed the relevance of different acetylation phenotypes presented by homozygotes and compound heterozygotes slow acetylators on a clinical basis.

Objectives: This study aimed to investigate the association between NAT2 genotypes and the risk of developing DIH in Brazilian patients undergoing tuberculosis treatment, focusing on the discrimination of homozygotes and compound heterozygotes slow acetylators.

View Article and Find Full Text PDF

Amyotrophic Lateral Sclerosis (ALS) is the most frequent motor neuron disorder, with a significant social and economic burden. ALS remains incurable, and the only drugs approved for its treatments confers a survival benefit of a few months for the patients. Missense mutations in superoxide dismutase 1 (SOD1), a major cytoplasmic antioxidant enzyme, has been associated with ALS development, accounting for 23% of its familial cases and 7% of all sporadic cases.

View Article and Find Full Text PDF

The tryptophan hydroxylase 2 (TPH2) enzyme catalyzes the first step of serotonin biosynthesis. Serotonin is known for its role in several homeostatic systems related to sleep, mood, and food intake. As the reaction catalyzed by TPH2 is the rate-limiting step of serotonin biosynthesis, mutations in TPH2 have been associated with several psychiatric disorders (PD).

View Article and Find Full Text PDF

Profilin 1 (PFN1) protein plays key roles in neuronal growth and differentiation, membrane trafficking, and regulation of the actin cytoskeleton. Four natural variants of PFN1 were described as related to ALS, the most common adult-onset motor neuron disorder. However, the pathological mechanism of PFN1 in ALS is not yet completely understood.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that is characterized by the selective loss of motor neurons. Approximately 5% to 10% of patients with ALS have a family history of the disease, and approximately 20% of familial amyotrophic lateral sclerosis (fALS) cases are associated with mutations in Cu/Zn superoxide dismutase (SOD1). In this study, we evaluated the structural and functional effects of human A4F and A4V SOD1 protein mutations.

View Article and Find Full Text PDF

Brain-derived neurotrophic factor (BDNF) plays an important role in neurogenesis and synapse formation. The V66M is the most prevalent BDNF mutation in humans and impairs the function and distribution of BDNF. This mutation is related to several psychiatric disorders.

View Article and Find Full Text PDF