Reusing reclaimed water for crop irrigation can mitigate water scarcity in agriculture; however, contaminants such as pharmaceuticals and pesticides in wastewater pose risks. This study investigated the impact of a coupled bio-solar photocatalytic treatment on the reclamation of water polluted with seven pharmaceuticals and seven pesticides for irrigation of two tomato crop cycles. Pollutant residues were removed using natural sunlight and TiO/NaSO in a pilot plant located in Murcia, Spain.
View Article and Find Full Text PDFMany pharmaceuticals (PhMs), compounds for the treatment or prevention of diseases in humans and animals, have been identified as pollutants of emerging concern (PECs) due to their wide environmental distribution and potential adverse impact on nontarget organisms and populations. They are often found at significant levels in soils due to the continuous release of effluent and sludge from wastewater treatment plants (WWTPs), the release of which occurs much faster than the removal of PhMs. Although they are generally present at low environmental concentrations, conventional wastewater treatment cannot successfully remove PhMs from influent streams or biosolids.
View Article and Find Full Text PDFIn this study, a critical review was carried out using the Web of Science Core Collection database to analyse the scientific literature published to date to identify lines of research and future perspectives on the presence of chemical pollutants in beer brewing. Beer is one of the world's most popular drinks and the most consumed alcoholic beverage. However, a widespread challenge with potential implications for human and animal health is the presence of physical, chemical, and/or microbiological contaminants in beer.
View Article and Find Full Text PDFThis paper reviews the impact of beer-making stages (malting, mashing, boiling, and fermentation) on the behavior of pesticide residues. The large use of pesticides on barley and hop could cause the occurrence of their residues in beer. The foremost factors influencing the stability of residues (pH, temperature, and water content) and the physical-chemical properties of pesticides (octanol-water partition coefficient, vapor pressure, and water solubility) are essential to know their final fate.
View Article and Find Full Text PDFDithiocarbamate Fungicides (DTFs) are widely analyzed and studied mainly due to the fact that they play an important role in the cultivation of fruits and vegetables. This manuscript aims to display the results of a bibliometric analysis based on the Web of Science© database, performed in the DTF and food research area. A total of 374 publications were examined.
View Article and Find Full Text PDFSolar heterogeneous photocatalysis was used to remove trihalomethanes (THMs) from drinking water. THMs, mainly trichloromethane (TCM), tribromomethane (TBM), bromodichloromethane (BDCM) and dibromochloromethane (DBCM) are one of the main class of disinfection by-products (DBPs). THMs were determined by HSGC-MS with detection limits (LODs) ranging from 0.
View Article and Find Full Text PDFThis work is the first-ever study of the concurrence of four insecticides (chlorantraniliprole, imidacloprid, pirimicarb and thiamethoxam) and their main transformation products (TPs) in soil and pepper crop irrigated with reclaimed and non-reclaimed water under agricultural field conditions. Field experiments were conducted using different irrigation supplies: control water (CW), wastewater polluted with phytosanitary commercial products containing the studied insecticides (WW) and reclaimed wastewater after a photocatalytic processing with TiO/NaSO at pilot plant under sunlight (RWW). Photocatalytic treatments removed most of the insecticides and their TPs generated during the photoperiod.
View Article and Find Full Text PDFThis work assesses the behavior (adsorption, degradation and leaching) of four insecticides (chlorantraniliprole, thiametoxam, imidacloprid and pirimicarb) and their main reaction intermediates in a clay-loam textured soil (1.6% OM). Following the batch equilibrium method, the K (as log values) ranged from 1.
View Article and Find Full Text PDFThis work focuses on the effect of dissolved substances on the photocatalytic degradation of four herbicides, metribuzin and terbuthylazine (triazine) and chlorotoluron and isoproturon (phenylurea) in three different water matrix (deionized, mineral and leaching water). To study the effect of heterogeneous photocatalysis on their degradation, TiO and ZnO were used as photocatalysts in tandem with an oxidant (NaSO). Results show that the addition of both semiconductor materials significantly enhances degradation of the herbicides although in different proportions.
View Article and Find Full Text PDFIn this study, the photocatalytic degradation of four fungicides, myclobutanil, penconazole and difenoconazole (triazole compounds) and boscalid (carboxamide), has been examined in different aqueous matrices (tap water, irrigation water and two WWPT effluents). Experiments were conducted at laboratory scale with different reagents-zinc oxide (ZnO), titanium dioxide (TiO), sodium persulphate (NaSO) and the combined systems ZnO/NaSO and TiO/NaSO-in water exposed to UV-LED irradiation. Previously, the effect of catalyst and oxidant loading on the disappearance kinetics of the different fungicides was assessed to know maximum degradation efficiency.
View Article and Find Full Text PDFOne of the consequences of phytosanitary treatments applied to crops is the generation of a great volume of agro-wastewater having pesticide residues. These pollutants can be considered a serious threat to the environment and human health due to their capacity to affect distant areas remaining for a long time after their application. We have assessed the degradation of five pesticides in agro-waste water produced in two farms by the cleaning pesticide containers and phytosanitary treatment equipment used in the farms.
View Article and Find Full Text PDFThe addition of organic wastes is a common agronomic practice in some Mediterranean regions to increase soil organic matter. In addition, they consume high amounts of agrochemicals. Hand-packed soil columns were used to evaluate the effect of three different composted organic soil amendments (agro-forestry, agro-industrial and animal manure) on the leachability of eight persistent herbicides.
View Article and Find Full Text PDFThe effect of vermicompost added to a loam soil on the leaching behaviour of two herbicides (triclopyr and fluroxypyr) was examined. Mobility of the herbicides was assessed using disturbed soil columns under laboratory conditions. In both cases, the addition of vermicompost significantly increased the sorption of the compounds.
View Article and Find Full Text PDFWe have demonstrated the potential leaching of eight compounds, one insecticide (flonicamid) and seven fungicides (myclobutanil, penconazole, boscalid, difenoconazole, trifloxystrobin, pyraclostrobin and fenpyroximate) trough a typical Mediterranean soil (Calcaric regosol). The concentrations found in leaching water were in all cases above the limit set by the EU in groundwater (0.1 μg L).
View Article and Find Full Text PDFThe removal of 17 pesticides (pymetrozine, flonicamid, imidacloprid, acetamiprid, cymoxanil, thiachloprid, spinosad, chlorantraniliprole, triadimenol, tebuconazole, fluopyram, difenoconazole, cyflufenamid, hexythiazox, spiromesifen, folpet and acrinathrin) found in agro-wastewater from washing of containers and phytosanitary treatments equipment, has been carried out using sodium persulfate (NaSO) at pilot plant scale under natural sunlight. Persulfate is a strong oxidant, inexpensive and environmentally appropriate. However, this oxidant is slow in kinetics under ordinary conditions.
View Article and Find Full Text PDFInvestigations of anthropogenic contaminants in fresh- and wastewater have shown a wide variety of undesirable organic compounds such as Endocrine Disruptors (EDs). As a result, wastewater treatments using innovative technologies to remove those organic compounds are required. In this paper, the photodegradation of six EDs in wastewater at pilot plant scale is reported.
View Article and Find Full Text PDFEndocrine disruptors (EDs) are xenobiotics that interfere with the synthesis, secretion, transport, binding, action, and elimination of the natural hormones. In this paper, the photodegradation of six EDs in municipal wastewater treatment plant effluents at pilot plant scale is reported. The EDs were bisphenol A, bisphenol B, diamyl phthalate, butyl benzylphthalate, methyl p-hydroxybenzoate, and ethyl 4-hydroxybenzoate.
View Article and Find Full Text PDFBull Environ Contam Toxicol
October 2017
The mobility of two relatively new antranilic diamide insecticides, cyanantraniliprole (CY) and cholantraniliprole (CH) in soil was examined, by means of disturbed columns loaded with a typical semiarid Mediterranean soil (Calcaric fluvisol) under laboratory conditions. Both insecticides appeared in leachates, with 52% of CY and 41% of CH of the initial mass added (1 µg g) present. For CY, 21% and 19% were recovered from the upper and bottom layers of the soil, respectively, while for CH, 33% and 22% were recovered from the upper and bottom layers respectively.
View Article and Find Full Text PDFThe photodegradation of flubendiamide (benzenedicarboxamide insecticide), a relatively new insecticide was investigated in aqueous suspensions binary (ZnO of and TiO2 ) and ternary (Zn2 TiO4 and ZnTiO3 ) oxides under artificial light (300-460 nm) irradiation. Photocatalytic experiments showed that the addition of semiconductors, especially ZnO and TiO2 , in tandem with an electron acceptor (Na2 S2 O8 ) enhances the degradation rate of this compound in comparison with those carried out with catalyst alone and photolytic tests. The photocatalytical degradation of flubendiamide using ZnO/Na2 S2 O8 and TiO2 /Na2 S2 O8 followed first-order kinetics.
View Article and Find Full Text PDFIn this study, we examined the effect of four different organic wastes--composted sheep manure (CSM), spent coffee grounds (SCG), composted pine bark (CPB) and coir (CR)--on the sorption, persistence and mobility of eight symmetrical and two asymmetrical-triazine herbicides: atrazine, propazine, simazine, terbuthylazine (chlorotriazines), prometon (methoxytriazine), prometryn, simetryn, terbutryn (methylthiotriazines), metamitron and metribuzin (triazinones). The downward movement of herbicides was monitored using disturbed soil columns packed with a clay loam soil (Hipercalcic calcisol) under laboratory conditions. For unamended and amended soils, the groundwater ubiquity score (GUS) was calculated for each herbicide on the basis of its persistence (as t½) and mobility (as KOC).
View Article and Find Full Text PDFSulfonylurea herbicides (SUHs) are a family of environmentally compatible herbicides but their high water solubility, moderate to high mobility through the soil profile, and slow degradation rate make them potential contaminants of groundwater as demonstrated in this paper. The photodegradation of a mixture of 30 SUHs in aqueous suspensions of semiconductor materials (ZnO and TiO2 in tandem with Na2S2O8 as electron acceptor) under artificial light (300-460 nm) irradiation was investigated. As expected, the influence of both semiconductors on the degradation of SUHs was very significant in all cases.
View Article and Find Full Text PDFThe photocatalytic degradation of sixteen substituted phenylurea herbicides (PUHs) in pure water has been studied using zinc oxide (ZnO) and titanium dioxide (TiO(2)) as photocatalyst under artificial light irradiation. Photocatalytic experiments showed that the addition of these chalcogenide oxides in tandem with the oxidant (Na(2)S(2)O(8)) strongly enhances the degradation rate of these compounds in comparison with those carried out with ZnO and TiO(2) alone and photolytic tests. Comparison of catalysts showed that ZnO is the most efficient for the removal of such herbicides in optimal conditions and at constant volumetric rate of photon absorption in the photoreactor.
View Article and Find Full Text PDFIn this study, the potential groundwater pollution of 12 substituted phenylurea herbicides (chlorbromuron, chlorotoluron, diuron, fenuron, fluometuron, isoproturon, linuron, metobromuron, metoxuron, monolinuron, Monuron, and neburon) was investigated under laboratory conditions. For this purpose, leaching studies were conducted using disturbed soil columns filled with two different agricultural soils, one hypercalcic calcisol (HC) and the other endoleptic phaeozem (EP). In the case of the HC, all of the studied herbicides were found in leachates, while for the EP only, chlorbromuron, chlorotoluron, isoproturon, monolinuron, and, especially, fenuron were recovered.
View Article and Find Full Text PDF