The aim of this work is to synthesize a magnetic magnetite/multi-walled carbon nanotube (FeO/MWCNT) catalyst by a method combining co-precipitation and hydrothermal treatments for the efficient removal of diclofenac (DCF) by catalytic wet peroxide oxidation (CWPO). The support (MWCNTs) shows a moderate-large surface area and good adsorption capacity, leading to the improvement of the magnetite (FeO) dispersion on its surface. The response surface methodology (RSM) was applied in order to find out the effect of the reaction parameters on DCF removal, allowing to establish the optimum operating conditions (T = 60 °C, [HO] = 2.
View Article and Find Full Text PDFThis work involves the study of the influence of textural and chemical adsorbent properties on natural organic matter (NOM) removal and the simultaneous adsorption of caffeine and NOM in pharmaceutical wastewater. The performance of a microporous activated carbon, Calgon F400, a synthesized mesoporous carbon from peach stones and a commercial sepiolite in the removal of NOM of a WWTP effluent, and the competitive adsorption of caffeine/NOM were evaluated. It was evidenced that the microporous structure of the adsorbents significantly conditioned the removal of NOM, finding that F400 activated carbon (microporous volume of 0.
View Article and Find Full Text PDFActive nickel catalysts (7 wt%) supported over Mg-Al mixed oxides have been recently developed and it has also been demonstrated that they are also highly selective in Catalytic Wet air Oxidation (CWAO) of dyes. CWAO of Chromotrope 2R (C2R) has been studied using a trickle bed reactor employing temperatures from 100 to 180 °C, liquid flow rates from 0.1 to 0.
View Article and Find Full Text PDFCatalytic wet air oxidation (CWAO) of a Basic Yellow 11 (BY11) aqueous solution, chosen as a model of a hardly biodegradable non-azo dye was carried out in a continuous-flow trickle-bed reactor, using nickel supported over hydrotalcite precursor calcined at 550°C. An increase in the reaction temperature (120-180°C), and a decrease in dye concentration (1000-3000 ppm) or liquid flow rate (0.1-0.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
November 2011
Background, Aim, And Scope: Textile industry produces wastewater which contributes to water pollution since it utilizes a lot of chemicals. Preliminary studies show that the wastewater from textile industries contains grease, wax, surfactant, and dyes. The objective of this study was to determine the treatment efficiency of the nickel catalysts supported on hydrotalcites in three-dye model compounds and two types of wastewater.
View Article and Find Full Text PDFActivated carbon was utilized as adsorbent to remove anionic dye, Orange II (OII), and cationic dye, Methylene blue (MB), from aqueous solutions by adsorption. Batch experiments were conducted to study the effects of temperature (30-65 degrees C), initial concentration of adsorbate (300-500 mg L(-1)) and pH (3.0-9.
View Article and Find Full Text PDF