Solid-supported amines having low molecular weight branched poly(ethylenimine) (PEI) physically impregnated into porous solid supports are promising adsorbents for CO capture. Co-impregnating short-chain poly(ethylene glycol) (PEG) together with PEI alters the performance of the adsorbent, delivering improved amine efficiency (AE, mol CO sorbed/mol N) and faster CO uptake rates. To uncover the physical basis for this improved gas capture performance, we probe the distribution and mobility of the polymers in the pores via small angle neutron scattering (SANS), solid-state NMR, and molecular dynamic (MD) simulation studies.
View Article and Find Full Text PDFPrevious research has demonstrated that amine polymers rich in primary and secondary amines supported on mesoporous substrates are effective, selective sorbent materials for removal of CO from simulated flue gas and air. Common substrates used include mesoporous alumina and silica (such as SBA-15 and MCM-41). Conventional microporous materials are generally less effective, since the pores are too small to support low volatility amines.
View Article and Find Full Text PDF