Metastatic pancreatic neuroendocrine tumors (PNET) remain an unmet clinical problem. Chronologic treatment in PNETs includes observation (watchful protocol), surgery, targeted therapy, and chemotherapy. However, increasing evidence illustrates that the outcomes of targeted therapeutic options for the treatment of advanced PNETs show minimal response.
View Article and Find Full Text PDFPancreatic neuroendocrine tumors (PNETs) are known to be the second most common epithelial malignancy of the pancreas. PNETs can be listed among the slowest growing as well as the fastest growing human cancers. The prevalence of PNETs is deceptively low; however, its incidence has significantly increased over the past decades.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDAC) remains an unmet clinical problem in urgent need of newer molecularly driven treatment modalities. Calcium signals, particularly those associated with calcium release-activated calcium (CRAC) channels, are known to influence the development, growth, and metastasis of many cancers. This is the first study investigating the impact of CRAC channel inhibition on PDAC cell lines and patient-derived tumor models.
View Article and Find Full Text PDFLenvatinib is a multitargeted tyrosine kinase inhibitor (TKI) that shows improved median progression-free survival (PFS) in patients with thyroid carcinomas. However, virtually all patients ultimately progress, indicating the need for a better understanding of the mechanisms of resistance. Here, we examined the molecular profile of anaplastic thyroid cancer cells (8505C) exposed to lenvatinib and found that long-term exposure to lenvatinib caused phenotypic changes.
View Article and Find Full Text PDFPancreatic neuroendocrine tumors (PNET) remain an unmet clinical need. In this study, we show that targeting both nicotinamide phosphoribosyltransferase (NAMPT) and p21-activated kinase 4 (PAK4) could become a synthetic lethal strategy for PNET. The expression of PAK4 and NAMPT was found to be higher in PNET tissue compared to normal cells.
View Article and Find Full Text PDFRas gene (HRAS, NRAS, and KRAS) has been observed to be mutated and hyper-activated in a significant proportion of cancers. However, mutant Ras remains a challenging therapeutic target. Similarly, inhibition of targets upstream and downstream of Ras has shown limited clinical utility.
View Article and Find Full Text PDF