Publications by authors named "Gabriel Martinez-Pinedo"

Article Synopsis
  • Radioactive nuclei that live for millions of years help us understand the Sun's formation and the nucleosynthesis happening when it was born, with lead (Pb) being a key example.
  • Recent measurements of the weak decay of ionized thallium (Tl) provided a more accurate half-life, which was found to be 4.7 times longer than previously thought, thus reducing uncertainty in our calculations.
  • Using these improved decay rates, researchers calculated lead yields in asymptotic giant branch (AGB) stars, confirmed isolation times for solar material, and validated the theory that the Sun formed in a long-lived molecular cloud.
View Article and Find Full Text PDF

We present a new nucleosynthesis process that may take place on neutron-rich ejecta experiencing an intensive neutrino flux. The nucleosynthesis proceeds similarly to the standard r process, a sequence of neutron captures and beta decays with, however, charged-current neutrino absorption reactions on nuclei operating much faster than beta decays. Once neutron-capture reactions freeze out the produced r process, neutron-rich nuclei undergo a fast conversion of neutrons into protons and are pushed even beyond the β stability line, producing the neutron-deficient p nuclei.

View Article and Find Full Text PDF

We present an extensive study of nuclear matrix elements (NME) for the neutrinoless double-beta decay of the nuclei 48Ca, 76Ge, 82Se, 96Zr, 100Mo, 116Cd, 124Sn, 128Te, 130Te, 136Xe, and 150Nd based on state-of-the-art energy density functional methods using the Gogny D1S functional. Beyond-mean-field effects are included within the generating coordinate method with particle number and angular momentum projection for both initial and final ground states. We obtain a rather constant value for the NMEs around 4.

View Article and Find Full Text PDF