Objective: This study investigates the effects of PRAX-562 on sodium current (I ), intrinsic neuronal excitability, and protection from evoked seizures to determine whether a preferential persistent I inhibitor would exhibit improved preclinical efficacy and tolerability compared to two standard voltage-gated sodium channel (Na ) blockers.
Methods: Inhibition of I was characterized using patch clamp analysis. The effect on intrinsic excitability was measured using evoked action potentials recorded from hippocampal CA1 pyramidal neurons in mouse brain slices.
The gene encodes the sodium-activated potassium channel K1.1 (Slack, Slo2.2).
View Article and Find Full Text PDFNeuroactive steroids (NASs) play a pivotal role in maintaining homeostasis is the CNS. We have discovered that one NAS in particular, 24()-hydroxycholesterol (24()-HC), is a positive allosteric modulator (PAM) of NMDA receptors. Using 24()-HC as a chemical starting point, we have identified other NASs that have good in vitro potency and efficacy.
View Article and Find Full Text PDFAberrant activation of signaling through the RAS-RAF-MEK-ERK (MAPK) pathway is implicated in numerous cancers, making it an attractive therapeutic target. Although BRAF and MEK-targeted combination therapy has demonstrated significant benefit beyond single-agent options, the majority of patients develop resistance and disease progression after approximately 12 months. Reactivation of ERK signaling is a common driver of resistance in this setting.
View Article and Find Full Text PDFCertain classes of neuroactive steroids (NASs) are positive allosteric modulators (PAM) of synaptic and extrasynaptic GABA receptors. Herein, we report new SAR insights in a series of 5β-nor-19-pregnan-20-one analogues bearing substituted pyrazoles and triazoles at C-21, culminating in the discovery of 3α-hydroxy-3β-methyl-21-(4-cyano-1H-pyrazol-1'-yl)-19-nor-5β-pregnan-20-one (SAGE-217, 3), a potent GABA receptor modulator at both synaptic and extrasynaptic receptor subtypes, with excellent oral DMPK properties. Compound 3 has completed a phase 1 single ascending dose (SAD) and multiple ascending dose (MAD) clinical trial and is currently being studied in parallel phase 2 clinical trials for the treatment of postpartum depression (PPD), major depressive disorder (MDD), and essential tremor (ET).
View Article and Find Full Text PDFDespite the availability of multiple antiepileptic drugs (AED), failure to adequately control seizures is a challenge for approximately one third of epilepsy patients, and new therapies with a differentiated mechanism of action are needed. The neuroactive steroid, SGE-516, is a positive allosteric modulator of both gamma- and delta-containing GABA receptors. This broad GABA receptor activity differentiates neuroactive steroids like SGE-516 from benzodiazepines, a class of anticonvulsants which have been shown in vitro to selectively target gamma-subunit containing GABA receptors.
View Article and Find Full Text PDFTwo novel compounds, pyridopyrimidines (1) and naphthyridines (2) were identified as potent inhibitors of bacterial NAD(+)-dependent DNA ligase (Lig) A in a fragment screening. SAR was guided by molecular modeling and X-ray crystallography. It was observed that the diaminonitrile pharmacophore made a key interaction with the ligase enzyme, specifically residues Glu114, Lys291, and Leu117.
View Article and Find Full Text PDFAlterations in the ratio of excitatory to inhibitory transmission are emerging as a common component of many nervous system disorders, including autism spectrum disorders (ASDs). Tonic γ-aminobutyric acidergic (GABAergic) transmission provided by peri- and extrasynaptic GABA type A (GABAA ) receptors powerfully controls neuronal excitability and plasticity and, therefore, provides a rational therapeutic target for normalizing hyperexcitable networks across a variety of disorders, including ASDs. Our previous studies revealed tonic GABAergic deficits in principal excitatory neurons in the basolateral amygdala (BLA) in the Fmr1(-/y) knockout (KO) mouse model fragile X syndrome.
View Article and Find Full Text PDFWhile several therapeutic options exist, the need for more effective, safe, and convenient treatment for a variety of autoimmune diseases persists. Targeting the Janus tyrosine kinases (JAKs), which play essential roles in cell signaling responses and can contribute to aberrant immune function associated with disease, has emerged as a novel and attractive approach for the development of new autoimmune disease therapies. We screened our compound library against JAK3, a key signaling kinase in immune cells, and identified multiple scaffolds showing good inhibitory activity for this kinase.
View Article and Find Full Text PDFNeuroactive steroids (NASs) have been shown to impact central nervous system (CNS) function through positive allosteric modulation of the GABA(A) receptor (GABA(A)-R). Herein we report the effects on the activity and pharmacokinetic properties of a series of nor-19 pregnanolone analogues bearing a heterocyclic substituent at C-21. These efforts resulted in the identification of SGE-516, a balanced synaptic/extrasynaptic GABA(A) receptor modulator, and SGE-872, a selective extrasynaptic GABA(A) receptor modulator.
View Article and Find Full Text PDFThymidylate kinase (TMK), an essential enzyme in bacterial DNA biosynthesis, is an attractive therapeutic target for the development of novel antibacterial agents, and we continue to explore TMK inhibitors with improved potency, protein binding, and pharmacokinetic potential. A structure-guided design approach was employed to exploit a previously unexplored region in Staphylococcus aureus TMK via novel interactions. These efforts produced compound 39, with 3 nM IC50 against S.
View Article and Find Full Text PDFPhosphoinositide 3-kinase γ (PI3Kγ) is an attractive target to potentially treat a range of disease states. Herein, we describe the evolution of a reported phenylthiazole pan-PI3K inhibitor into a family of potent and selective benzothiazole inhibitors. Using X-ray crystallography, we discovered that compound 22 occupies a previously unreported hydrophobic binding cleft adjacent to the ATP binding site of PI3Kγ, and achieves its selectivity by exploiting natural sequence differences among PI3K isoforms in this region.
View Article and Find Full Text PDFThymidylate kinase (TMK) is an essential enzyme for DNA synthesis in bacteria, phosphorylating deoxythymidine monophosphate (dTMP) to deoxythymidine diphosphate (dTDP), and thus is a potential new antibacterial drug target. Previously, we have described the first potent and selective inhibitors of Gram-positive TMK, leading to in vivo validation of the target. Here, a structure-guided design approach based on the initial series led to the discovery of novel sulfonylpiperidine inhibitors of TMK.
View Article and Find Full Text PDFThymidylate kinase (TMK) is an essential enzyme in bacterial DNA synthesis. The deoxythymidine monophosphate (dTMP) substrate binding pocket was targeted in a rational-design, structure-supported effort, yielding a unique series of antibacterial agents showing a novel, induced-fit binding mode. Lead optimization, aided by X-ray crystallography, led to picomolar inhibitors of both Streptococcus pneumoniae and Staphylococcus aureus TMK.
View Article and Find Full Text PDFThere is an urgent need for new antibacterials that pinpoint novel targets and thereby avoid existing resistance mechanisms. We have created novel synthetic antibacterials through structure-based drug design that specifically target bacterial thymidylate kinase (TMK), a nucleotide kinase essential in the DNA synthesis pathway. A high-resolution structure shows compound TK-666 binding partly in the thymidine monophosphate substrate site, but also forming new induced-fit interactions that give picomolar affinity.
View Article and Find Full Text PDFThe Ras/Raf/MEK/ERK signal transduction, an oncogenic pathway implicated in a variety of human cancers, is a key target in anticancer drug design. A novel series of pyrimidylpyrrole ERK inhibitors has been identified. Discovery of a conformational change for lead compound 2, when bound to ERK2 relative to antitarget GSK3, enabled structure-guided selectivity optimization, which led to the discovery of 11e, a potent, selective, and orally bioavailable inhibitor of ERK.
View Article and Find Full Text PDFThe Ras/Raf/MEK/ERK signal transduction is a key oncogenic pathway implicated in a variety of human cancers. We have identified a novel series of pyrazolylpyrroles as inhibitors of ERK. Aided by the discovery of two distinct binding modes for the pyrazolylpyrrole scaffold, structure-guided optimization culminated in the discovery of 6p, a potent and selective inhibitor of ERK.
View Article and Find Full Text PDF