Membrane uncoupling protein 3 (UCP3), a member of the mitochondrial uncoupling protein family, was discovered in 1997. UCP3's properties, such as its high homology to other mitochondrial carriers, especially to UCP2, its short lifetime and low specificity of UCP3 antibodies, have hindered progress in understanding its biological function and transport mechanism over decades. The abundance of UCP3 is highest in murine brown adipose tissue (BAT, 15.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
March 2018
Mitochondrial membrane uncoupling protein 3 (UCP3) is not only expressed in skeletal muscle and heart, but also in brown adipose tissue (BAT) alongside UCP1, which facilitates a proton leak to support non-shivering thermogenesis. In contrast to UCP1, the transport function and molecular mechanism of UCP3 regulation are poorly investigated, although it is generally agreed upon that UCP3, analogous to UCP1, transports protons, is activated by free fatty acids (FFAs) and is inhibited by purine nucleotides (PNs). Because the presence of two similar uncoupling proteins in BAT is surprising, we hypothesized that UCP1 and UCP3 are differently regulated, which may lead to differences in their functions.
View Article and Find Full Text PDFWe combined recognition imaging and force spectroscopy to study the interactions between receptors and ligands on the single molecule level. This method allowed the selection of a single receptor molecule reconstituted in a supported lipid membrane at low density, with the subsequent quantification of the receptor-ligand unbinding force. Based on atomic force microscopy (AFM) tapping mode, a cantilever tip carrying a ligand molecule was oscillated across a membrane.
View Article and Find Full Text PDF