Publications by authors named "Gabriel Lamothe"

Therapeutic genome editing has the potential to cure diseases by directly correcting genetic mutations in tissues and cells. Recent progress in the CRISPR-Cas9 systems has led to breakthroughs in gene editing tools because of its high orthogonality, versatility, and efficiency. However, its safe and effective administration to target organs in patients is a major hurdle.

View Article and Find Full Text PDF

The worldwide proliferation of the SARS-CoV-2 virus in the past 3 years has allowed the virus to accumulate numerous mutations. Dangerous lineages have emerged one after another, each leading to a new wave of the pandemic. In this study, we have developed the THRASOS pipeline to rapidly discover lineage-specific mutation signatures and thus advise the development of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based diagnostic tests.

View Article and Find Full Text PDF

Duchenne muscular dystrophy is a rare and lethal hereditary disease responsible for progressive muscle wasting due to mutations in the gene. We used the CRISPR-Cas9 Prime editing technology to develop different strategies to correct frameshift mutations in gene carrying the deletion of exon 52 or exons 45 to 52. With optimized epegRNAs, we were able to induce the specific substitution of the GT nucleotides of the splice donor site of exon 53 in up to 32% of HEK293T cells and 28% of patient myoblasts.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is an X-linked hereditary disease characterized by progressive muscle wasting due to modifications in the gene (exon deletions, nonsense mutations, intra-exonic insertions or deletions, exon duplications, splice site defects, and deep intronic mutations) that result in a lack of functional dystrophin expression. Many therapeutic approaches have so far been attempted to induce dystrophin expression and improve the patient phenotype. In this manuscript, we describe the relevant updates for some therapeutic strategies for DMD aiming to restore dystrophin expression.

View Article and Find Full Text PDF

Discovery of the CRISPR-Cas (clustered regularly interspaced short palindromic repeat, CRISPR-associated) system a decade ago has opened new possibilities in the field of precision medicine. CRISPR-Cas was initially identified in bacteria and archaea to play a protective role against foreign genetic elements during viral infections. The application of this technique for the correction of different mutations found in the Duchenne muscular dystrophy (DMD) gene led to the development of several potential therapeutic approaches for DMD patients.

View Article and Find Full Text PDF

The amyloid precursor protein () is a transmembrane protein mostly found in neurons. Cleavage of this protein by β-secretase can lead to the formation of amyloid-β (Aβ) peptide plaque, which leads to Alzheimer's disease. Genomic analysis of an Icelandic population that did not show symptoms of Alzheimer's at an advanced age led to the discovery of the A673T mutation.

View Article and Find Full Text PDF

The deposition of Aβ plaques in the brain leads to the onset and development of Alzheimer's disease. The Amyloid precursor protein (APP) is cleaved by α-secretase (non-amyloidogenic processing of APP), however increased cleavage by β-secretase (BACE1) leads to the accumulation of Aβ peptides, which forms plaques. APP mutations mapping to exons 16 and 17 favor plaque accumulation and cause Familial Alzheimer Disease (FAD).

View Article and Find Full Text PDF