Over recent years, the surge in mobile communication has deepened global connectivity. With escalating demands for faster data rates, the push for higher carrier frequencies intensifies. The 7-20 GHz range, located between the 5G sub-6 GHz and the mm-wave spectra, provides an excellent trade-off between network capacity and coverage, and constitutes a yet-to-be-explored range for 5G and 6G applications.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
October 2023
This article reports on 30% scandium-doped AlN (ScAlN) lateral field-excited (LFE) cross-sectional Lame' mode resonators (CLMRs) with unprecedented performance in the 6-20 GHz range. By combining high-crystallinity 30% ScAlN piezoelectric thin films, a lithographic tunability of the resonance frequency, and a simple three-mask post-CMOS compatible fabrication process, we propose a technology platform that can enable the mass production of low-loss, wideband, and compact microacoustic filtering devices spanning a wide spectrum portion on the same chip for the next-generation radio frequency front ends (RFFEs) of handsets. This article demonstrates a successful scaling of the microacoustic technology well beyond the sub-6-GHz fifth-generation (5G) band, as well as the outstanding capabilities of high-crystallinity 30% ScAlN piezoelectric layers in delivering high-quality factor ( Q ) and high-electromechanical coupling ( k ) resonators, notably exceeding the state of the art in terms of relevant figures of merit (FOMs).
View Article and Find Full Text PDF