Publications by authors named "Gabriel Galea"

Article Synopsis
  • The processes of primary and secondary neurulation, which lead to spinal cord formation, are not fully understood in humans due to difficulties accessing embryos at the relevant stages (3-7 weeks post-conception).
  • Analysis of 108 human embryos reveals that while primary neurulation is similar to that in mice, it has distinct differences; secondary neurulation begins later and forms a single lumen, unlike the multiple lumens seen in chicks.
  • Key differences in neurulation timing between humans and mice were noted, such as the rate of somite formation and the termination of axial elongation associated with apoptosis in the embryonic tailbud; these findings can aid current research on neurulation using stem cell-derived organoids
View Article and Find Full Text PDF

Cell patterning is essential for organized tissue development, enabling precise geometric arrangement of cells, body axis establishment and developmental timing. Here we investigate the role of physical forces and mechanical cues in organizing and maintaining cell morphological patterns during hindbrain neuropore closure, a critical morphogenetic event in vertebrate development. Through live-imaging in mouse embryos and cell-based biophysical modeling, we demonstrate that active cell crawling and actomyosin purse-string contraction at the neuropore border are insufficient to account for the observed cellular arrangements in space and time.

View Article and Find Full Text PDF

Morphogenesis requires embryonic cells to generate forces and perform mechanical work to shape their tissues. Incorrect functioning of these force fields can lead to congenital malformations. Understanding these dynamic processes requires the quantification and profiling of three-dimensional mechanics during evolving vertebrate morphogenesis.

View Article and Find Full Text PDF

To report on a micro computed tomography (micro-CT) system capable of x-ray phase contrast imaging and of increasing spatial resolution at constant magnification.The micro-CT system implements the edge illumination (EI) method, which relies on two absorbing masks with periodically spaced transmitting apertures in the beam path; these split the beam into an array of beamlets and provide sensitivity to the beamlets' directionality, i.e.

View Article and Find Full Text PDF

We present a rare case of a female non-smoker diagnosed with a large benign tracheal chondrohamartoma, masquerading as severe asthma. The patient was in her late 70s and had a history of asthma. She had presented to hospital with multiple episodes of intractable cough, shortness of breath and wheeze in the year prior to diagnosis.

View Article and Find Full Text PDF

Closed spinal dysraphisms are poorly understood malformations classified as neural tube (NT) defects. Several, including terminal myelocystocele, affect the distal spine. We have previously identified a NT closure-initiating point, Closure 5, in the distal spine of mice.

View Article and Find Full Text PDF

Three-dimensional hydrogel-based organ-like cultures can be applied to study development, regeneration, and disease in vitro. However, the control of engineered hydrogel composition, mechanical properties and geometrical constraints tends to be restricted to the initial time of fabrication. Modulation of hydrogel characteristics over time and according to culture evolution is often not possible.

View Article and Find Full Text PDF

The single cell layer of surface ectoderm (SE) which overlies the closing neural tube (NT) plays a crucial biomechanical role during mammalian NT closure (NTC), challenging previous assumptions that it is only passive to the force-generating neuroepithelium (NE). Failure of NTC leads to congenital malformations known as NT defects (NTDs), including spina bifida (SB) and anencephaly in the spine and brain respectively. In several mouse NTD models, SB is caused by misexpression of SE-specific genes and is associated with disrupted SE mechanics, including loss of rostrocaudal cell elongation believed to be important for successful closure.

View Article and Find Full Text PDF

Understanding the molecular mechanisms that lead to birth defects is an important step towards improved primary prevention. Mouse embryos homozygous for the Kumba (Ku) mutant allele of Zic2 develop severe spina bifida with complete lack of dorsolateral hinge points (DLHPs) in the neuroepithelium. Bone morphogenetic protein (BMP) signalling is overactivated in Zic2Ku/Ku embryos, and the BMP inhibitor dorsomorphin partially rescues neural tube closure in cultured embryos.

View Article and Find Full Text PDF

Zippering is a phenomenon of tissue morphogenesis whereby fusion between opposing epithelia progresses unidirectionally over significant distances, similar to the travel of a zip fastener, to ultimately ensure closure of an opening. A comparable process can be observed during Drosophila dorsal closure and mammalian wound healing, while zippering is employed by numerous organs such as the optic fissure, palatal shelves, tracheoesophageal foregut, and presumptive genitalia to mediate tissue sealing during normal embryonic development. Particularly striking is zippering propagation during neural tube morphogenesis, where the fusion point travels extensively along the embryonic axis to ensure closure of the neural tube.

View Article and Find Full Text PDF

Neuroepithelial cells balance tissue growth requirement with the morphogenetic imperative of closing the neural tube. They apically constrict to generate mechanical forces which elevate the neural folds, but are thought to apically dilate during mitosis. However, we previously reported that mitotic neuroepithelial cells in the mouse posterior neuropore have smaller apical surfaces than non-mitotic cells.

View Article and Find Full Text PDF

Objective: Comorbid congenital malformation of multiple organs may indicate a shared genetic/teratogenic causality. Folic acid supplementation reduces the population-level prevalence of isolated neural tube defects (NTDs), but whether complex cases involving independent malformations are also responsive is unknown. We aimed to describe the epidemiology of NTDs with comorbid malformations in a Chinese population and assess the impact of folic acid supplementation.

View Article and Find Full Text PDF

Background: Cannabidiol (CBD) is a nonpsychoactive constituent of cannabis widely available as a dietary supplement. Previous reports that it impairs the retinoid, sonic hedgehog, and folate metabolism pathways raise concern that it may impair closure of the embryonic neural tube (NT), producing NT defects including spina bifida and exencephaly.

Methods: We undertook teratogenicity testing of CBD in mouse whole embryo culture.

View Article and Find Full Text PDF

Planar cell polarity (PCP) signalling is vital for initiation of mouse neurulation, with diminished convergent extension (CE) cell movements leading to craniorachischisis, a severe neural tube defect (NTD). Some humans with NTDs also have PCP gene mutations but these are heterozygous, not homozygous as in mice. Other genetic or environmental factors may interact with partial loss of PCP function in human NTDs.

View Article and Find Full Text PDF

Objectives: Coronavirus disease 2019 has been reported to be a prothrombotic condition; however, multicenter data comparing this with other viral pneumonias in those requiring extracorporeal membrane oxygenation are lacking. We conducted a multicenter study using whole-body CT to examine the prevalence, severity, and nature of vascular complications in coronavirus disease 2019 in comparison with patients with other viral pneumonias.

Design: We analyzed whole-body CT scans for the presence of vascular thrombosis (defined as pulmonary artery thrombus, venous thrombus, systemic arterial thrombus, or end-organ infarct).

View Article and Find Full Text PDF

Mechanical loading-related strains trigger bone formation by osteoblasts while suppressing resorption by osteoclasts, uncoupling the processes of formation and resorption. Osteocytes may orchestrate this process in part by secreting sclerostin (SOST), which inhibits osteoblasts, and expressing receptor activator of nuclear factor-κB ligand (RANKL/TNFSF11) which recruits osteoclasts. Both SOST and RANKL are targets of the master osteoblastic transcription factor RUNX2.

View Article and Find Full Text PDF

Gap closure is a common morphogenetic process. In mammals, failure to close the embryonic hindbrain neuropore (HNP) gap causes fatal anencephaly. We observed that surface ectoderm cells surrounding the mouse HNP assemble high-tension actomyosin purse strings at their leading edge and establish the initial contacts across the embryonic midline.

View Article and Find Full Text PDF

Post-zygotic mutations that generate tissue mosaicism are increasingly associated with severe congenital defects, including those arising from failed neural tube closure. Here we report that neural fold elevation during mouse spinal neurulation is vulnerable to deletion of the VANGL planar cell polarity protein 2 (Vangl2) gene in as few as 16% of neuroepithelial cells. Vangl2-deleted cells are typically dispersed throughout the neuroepithelium, and each non-autonomously prevents apical constriction by an average of five Vangl2-replete neighbours.

View Article and Find Full Text PDF

Glycine cleavage system H protein (GCSH) is a component of the glycine cleavage system (GCS), a conserved protein complex that acts to decarboxylate glycine. Mutation of or , encoding the GCS components aminomethyltransferase and glycine decarboxylase, can cause malformations of the developing CNS (neural tube defects (NTDs) and ventriculomegaly) as well as a post-natal life-limiting neurometabolic disorder, Non-Ketotic Hyperglycinemia. In contrast, it is unclear whether mutation of contributes to these conditions and we therefore investigated GCSH loss of function in mice.

View Article and Find Full Text PDF

Skeletal elements have a diverse range of shapes and sizes specialized to their various roles including protecting internal organs, locomotion, feeding, hearing, and vocalization. The precise positioning, size, and shape of skeletal elements is therefore critical for their function. During embryonic development, bone forms by endochondral or intramembranous ossification and can arise from the paraxial and lateral plate mesoderm or neural crest.

View Article and Find Full Text PDF

Ocular coloboma is a congenital eye malformation, resulting from a failure in optic fissure closure (OFC) and causing visual impairment. There has been little study of the epithelial fusion process underlying closure in the human embryo and coloboma aetiology remains poorly understood. We performed RNAseq of cell populations isolated using laser capture microdissection to identify novel human OFC signature genes and probe the expression profile of known coloboma genes, along with a comparative murine analysis.

View Article and Find Full Text PDF

Quantification of cortical bone mass and architecture using μCT is commonplace in osteoporosis and osteoarthritis research. Different groups often report substantially divergent mouse cortical bone responses to nominally comparable interventions. In the case of studies assessing bones' responses to externally applied loading, these differences are commonly associated with methodological differences in the loading regime.

View Article and Find Full Text PDF