Publications by authors named "Gabriel Forn-Cuni"

The blood-brain barrier (BBB) presents one of the main obstacles to delivering anticancer drugs in glioblastoma. Herein, we investigated the potential of a series of cyclic ruthenium-peptide conjugates as photoactivated therapy candidates for the treatment of this aggressive tumor. The three compounds studied, , , and ([Ru(Phphen) Ac-XRGDX-NH)]Cl with Phphen = 4,7-diphenyl-1,10-phenanthroline and X, X = His or Met), include an integrin-targeted pentapeptide coordinated to a ruthenium warhead via two photoactivated ruthenium-X bonds.

View Article and Find Full Text PDF

Tuberculosis (TB) is a world health challenge the treatment of which is impacted by the rise of drug-resistant strains. Thus, there is an urgent need for new antitubercular compounds and novel approaches to improve current TB therapy. The zebrafish animal model has become increasingly relevant as an experimental system.

View Article and Find Full Text PDF

Tumors growing in metabolically challenged environments, such as glioblastoma in the brain, are particularly reliant on crosstalk with their tumor microenvironment (TME) to satisfy their high energetic needs. To study the intricacies of this metabolic interplay, we interrogated the heterogeneity of the glioblastoma TME using single-cell and multi-omics analyses and identified metabolically rewired tumor-associated macrophage (TAM) subpopulations with pro-tumorigenic properties. These TAM subsets, termed lipid-laden macrophages (LLMs) to reflect their cholesterol accumulation, are epigenetically rewired, display immunosuppressive features, and are enriched in the aggressive mesenchymal glioblastoma subtype.

View Article and Find Full Text PDF

Conjunctival melanoma (CoM) is a rare but potentially lethal cancer of the eye, with limited therapeutic option for metastases. A better understanding how primary CoM disseminate to form metastases is urgently needed in order to develop novel therapies. Previous studies indicated that primary CoM tumors express Vascular Endothelial Growth Factor (VEGF) and may recruit pro-tumorigenic M2-like macrophages.

View Article and Find Full Text PDF

Metastatic colonization by circulating cancer cells is a highly inefficient process. To colonize distant organs, disseminating cancer cells must overcome many obstacles in foreign microenvironments, and only a small fraction of them survives this process. How these disseminating cancer cells cope with stress and initiate metastatic process is not fully understood.

View Article and Find Full Text PDF

Uveal melanoma (UM) is a rare malignant cancer of the eye, with up to 50% of patients dying from metastasis, for which no effective treatment is available. Due to the rarity of the disease, there is a great need to harness the limited material available from primary tumors and metastases for advanced research and preclinical drug screening. We established a platform to isolate, preserve, and transiently recover viable tissues, followed by the generation of spheroid cultures derived from primary UM.

View Article and Find Full Text PDF

Toll-like receptors (TLRs) have been implicated in the regulation of various metabolism pathways, in addition to their function in innate immunity. Here, we investigate the metabolic function of TLR2 in a larval zebrafish system. We studied larvae from a mutant and the wild type sibling controls in an unchallenged normal developmental condition using transcriptomic and metabolomic analyses methods.

View Article and Find Full Text PDF

is the most common nontuberculous mycobacterium (NTM) species causing infectious disease. Here, we characterized a infection model in zebrafish larvae, and compared it to infection, a model of tuberculosis. bacteria are efficiently phagocytosed and frequently induce granuloma-like structures in zebrafish larvae.

View Article and Find Full Text PDF

The global burden of tuberculosis (TB) is aggravated by the continuously increasing emergence of drug resistance, highlighting the need for innovative therapeutic options. The concept of host-directed therapy (HDT) as adjunctive to classical antibacterial therapy with antibiotics represents a novel and promising approach for treating TB. Here, we have focused on repurposing the clinically used anticancer drug tamoxifen, which was identified as a molecule with strong host-directed activity against intracellular Mycobacterium tuberculosis ().

View Article and Find Full Text PDF
Article Synopsis
  • - The study highlights the unclear role of CBR tissue expression and signaling in various diseases, prompting new research efforts.
  • - Researchers created a powerful fluorescent CBR agonist probe that combines a validated ligand with a silicon-rhodamine fluorophore for increased cell permeability.
  • - This probe uniquely maintains affinity for both mouse and human CBR, facilitating CBR detection in live cells and zebrafish, which could enhance the development of CBR-related drugs.
View Article and Find Full Text PDF

Background: Leptin plays a critical role in the regulation of metabolic homeostasis. However, the molecular mechanism and cross talks between leptin and metabolic pathways leading to metabolic homeostasis across different species are not clear. This study aims to explore the effects of leptin in mice and zebrafish larvae by integration of metabolomics and transcriptomics.

View Article and Find Full Text PDF

Polar flagella from mesophilic strains have previously been shown to be modified with a range of glycans. Mass spectrometry studies of purified polar flagellins suggested the glycan typically includes a putative pseudaminic acid like derivative; while some strains are modified with this single monosaccharide, others modified with a heterologous glycan. In the current study, we demonstrate that genes involved in polar flagella glycosylation are clustered in highly polymorphic genomic islands flanked by pseudaminic acid biosynthetic genes ().

View Article and Find Full Text PDF

The genus comprises a multitude of species known to cause serious disease in humans, including and , the responsible agents for tuberculosis and leprosy, respectively. In addition, there is a worldwide spike in the number of infections caused by a mixed group of species such as the , and complexes, collectively called nontuberculous mycobacteria (NTMs). The situation is forecasted to worsen because, like tuberculosis, NTMs either naturally possess or are developing high resistance against conventional antibiotics.

View Article and Find Full Text PDF

There is a growing interest in the use of post-fermentation mycelial waste to obtain cell wall chitin as an added-value product. In the pursuit to identify suitable production strains that can be used for post-fermentation cell wall harvesting, we turned to an strain in which the gene was deleted. Previous work has shown that the deletion of causes hyper-branching and thicker cell walls, traits that may be beneficial for the reduction in fermentation viscosity and lysis.

View Article and Find Full Text PDF

Chitin is an important fungal cell wall component that is cross-linked to β-glucan for structural integrity. Acquisition of chitin to glucan cross-links has previously been shown to be performed by transglycosylation enzymes in , called Congo Red hypersensitive (Crh) enzymes. Here, we characterized the impact of deleting all seven members of the gene family () in on cell wall integrity, cell wall composition and genome-wide gene expression.

View Article and Find Full Text PDF

DNA damage regulated autophagy modulator 1 (DRAM1) is a stress-inducible regulator of autophagy and cell death. DRAM1 has been implicated in cancer, myocardial infarction, and infectious diseases, but the molecular and cellular functions of this transmembrane protein remain poorly understood. Previously, we have proposed DRAM1 as a host resistance factor for tuberculosis (TB) and a potential target for host-directed anti-infective therapies.

View Article and Find Full Text PDF

Inflammasomes are cytosolic multiprotein complexes that regulate inflammatory responses to danger stimuli and infection, and their dysregulation is associated with an increasing number of autoinflammatory diseases. In recent years, zebrafish models of human pathologies to study inflammasome function in vivo have started to emerge. Here, we discuss inflammasome research in zebrafish in light of current knowledge about mammalian inflammasomes.

View Article and Find Full Text PDF

In mammals, recombination activating gene 1 (RAG1) plays a crucial role in adaptive immunity, generating a vast range of immunoglobulins. Rag1 zebrafish (Danio rerio) are viable and reach adulthood without obvious signs of infectious disease in standard nonsterile conditions, suggesting that innate immunity could be enhanced to compensate for the lack of adaptive immunity. By using microarray analysis, we confirmed that the expression of immunity- and apoptosis-related genes was increased in the rag1 fish.

View Article and Find Full Text PDF

Mycobacterial pathogens are the causative agents of chronic infectious diseases like tuberculosis and leprosy. Autophagy has recently emerged as an innate mechanism for defense against these intracellular pathogens. In vitro studies have shown that mycobacteria escaping from phagosomes into the cytosol are ubiquitinated and targeted by selective autophagy receptors.

View Article and Find Full Text PDF

Oxysterols are a family of cholesterol oxygenated derivatives with diverse roles in many biological activities and have recently been linked with the induction of a cellular antiviral state. The antiviral effects of 25-hydroxycholesterol (25HC) extend to several mammalian enveloped and non-enveloped viruses. It has been reported that the expression of the gene encoding cholesterol 25-hydroxylase (CH25H) is induced by interferons (IFNs).

View Article and Find Full Text PDF

Lipopolysaccharides (LPSs) are an integral part of the Gram-negative outer membrane, playing important organizational and structural roles and taking part in the bacterial infection process. In , , and , three different genomic regions taking part in the LPS core oligosaccharide (Core-OS) assembly have been identified, although the characterization of these clusters in most aeromonad species is still lacking. Here, we analyse the conservation of these LPS biosynthesis gene clusters in the all the 170 currently public genomes, including 30 different species, and characterise the structure of a putative common inner Core-OS in the family.

View Article and Find Full Text PDF

Interferon-gamma has been typically described as a pro-inflammatory cytokine playing an important role in the resolution of both viral and bacterial diseases. Nevertheless, some anti-inflammatory functions are also attributed to this molecule. In this work we have characterized for the first time the turbot (Scophthalmus maximus) interferon-gamma gene (ifng) and its expression pattern under basal conditions, after type I IFNs administration, and viral and bacterial infection.

View Article and Find Full Text PDF

Aeromonas hydrophila is an emerging pathogen of aquatic and terrestrial animals, including humans. Here, we report the whole-genome sequence of the septicemic A. hydrophila AH-1 strain, belonging to the serotype O11, and the first mesophilic Aeromonas with surface layer (S-layer) to be sequenced.

View Article and Find Full Text PDF

Aeromonas hydrophila is an emerging pathogen of poikilothermic animals, from fish to mammals, including humans. Here, we report the whole-genome sequence of the A. hydrophila AH-3 strain, isolated from a fish farm goldfish septicemia outbreak in Spain, with a characterized polar and lateral flagellum glycosylation pattern.

View Article and Find Full Text PDF
Article Synopsis
  • The turbot genome has been sequenced and annotated, aiding in breeding programs and understanding flatfish evolution.* -
  • Comparisons with model fish genomes reveal conserved chromosome structures and gene expansions related to vision and lipid metabolism, indicating adaptations to their environment.* -
  • The research identifies key traits like growth, sex determination, and disease resistance, providing insights for enhancing turbot production through marker-assisted selection.*
View Article and Find Full Text PDF