Photothermal heating via metal nanoparticles is utilized to degrade polyethylcyanoacrylate (PECA), which undergoes a thermally-driven depolymerization process, resulting in (i) monomer loss from the sample, (ii) repolymerization to form shorter chains (oligomer), and (iii) formation of carbonaceous by-products which are graphene-like and luminescent. These unique PECA properties are used to demonstrate the heterogeneous temperature distribution present during photothermal processing and the results are compared to degradation via conventional methods where a uniform temperature is present. Photothermal heating results in formation of pockets of depolymerized material around each nanoscale heating site.
View Article and Find Full Text PDFPhotothermal heating from embedded nanoparticles, a process whereby visible light is converted into heat resulting in a high temperature in each particle's immediate vicinity, was utilized to degrade low density polyethylene (LDPE) via thermo-oxidation. The spatially-varying steady-state photothermal temperature field is a potential mechanism by which ambient light (e.g.
View Article and Find Full Text PDFMetal nanoparticles incorporated at low concentration into epoxy systems enable in situ curing via photothermal heating. In the process of nanoparticle-mediated photothermal heating, light interacts specifically with particles embedded within a liquid or solid material and this energy is transformed into heat, resulting in significant temperature increase local to each particle with minimal warming of surroundings. The ability to use such internal heating to transform the mechanical properties of a material (e.
View Article and Find Full Text PDF