Publications by authors named "Gabriel Fabien-Ouellet"

Accurate and large-scale assessment of volumetric water content (VWC) plays a critical role in mining waste monitoring to mitigate potential geotechnical and environmental risks. In recent years, time-lapse electrical resistivity tomography (TL-ERT) has emerged as a promising monitoring approach that can be used in combination with traditional invasive and point-measurements techniques to estimate VWC in mine tailings. Moreover, the bulk electrical conductivity (EC) imaged using TL-ERT can be converted into VWC in the field using petrophysical relationships calibrated in the laboratory.

View Article and Find Full Text PDF

Mining operations generate large amounts of wastes which are usually stored into large-scale storage facilities which pose major environmental concerns and must be properly monitored to manage the risk of catastrophic failures and also to control the generation of contaminated mine drainage. In this context, non-invasive monitoring techniques such as time-lapse electrical resistivity tomography (TL-ERT) are promising since they provide large-scale subsurface information that complements surface observations (walkover, aerial photogrammetry or remote sensing) and traditional monitoring tools, which often sample a tiny proportion of the mining waste storage facilities. The purposes of this review are as follows: (i) to understand the current state of research on TL-ERT for various applications; (ii) to create a reference library for future research on TL-ERT and geoelectrical monitoring mining waste; and (iii) to identify promising areas of development and future research needs on this issue according to our experience.

View Article and Find Full Text PDF