MicroRNAs have emerged as important targets of chemopreventive strategies in breast cancer. We have found that miRNAs are dysregulated at an early stage in breast cancer, in non-malignant Ductal Carcinoma In Situ. Many dietary chemoprevention agents can act by epigenetically activating miRNA-signaling pathways involved in tumor cell proliferation and invasive progression.
View Article and Find Full Text PDFSignaling within the tumor microenvironment has a critical role in cancer initiation and progression. Adipocytes, one of the major components of the breast microenvironment, have been shown to provide pro-tumorigenic signals that promote cancer cell proliferation and invasiveness in vitro and tumorigenicity in vivo. Adipocyte secreted factors such as leptin and interleukin-6 (IL-6) have a paracrine effect on breast cancer cells.
View Article and Find Full Text PDFThe tumor microenvironment plays a critical role in regulating breast tumor progression. Signaling between preadipocytes and breast cancer cells has been found to promote breast tumor formation and metastasis. Exosomes secreted from preadipocytes are important components of the cancer stem cell niche.
View Article and Find Full Text PDFWorld J Stem Cells
November 2014
An increasing body of evidence supports a stepwise model for progression of breast cancer from ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC). Due to the high level of DCIS heterogeneity, we cannot currently predict which patients are at highest risk for disease recurrence or progression. The mechanisms of progression are still largely unknown, however cancer stem cell populations in DCIS lesions may serve as malignant precursor cells intimately involved in progression.
View Article and Find Full Text PDFUnlabelled: Triple-negative (ER(-), HER2(-), PR(-)) breast cancer (TNBC) is an aggressive disease with a poor prognosis with no available molecularly targeted therapy. Silencing of microRNA-145 (miR-145) may be a defining marker of TNBC based on molecular profiling and deep sequencing. Therefore, the molecular mechanism behind miR-145 downregulation in TNBC was examined.
View Article and Find Full Text PDFLong noncoding RNAs (lncRNAs) have emerged as key regulators of gene expression in embryonic stem cell (ESC) self-renewal and differentiation. In ESCs, lncRNAs are regulated at the genetic level via transcription factor binding to lncRNA gene promoters. Here we demonstrate that the key cytoprotective transcription factor NRF2 controls lncRNA expression in mammary stem cells.
View Article and Find Full Text PDFWe have designed a dual-color fluorescent reporter that can track microRNA expression in vitro, which can be used for lineage tracing experiments. We have used this system to track miR-140 promoter activity in breast cancer cells and to follow the impact of estrogen signaling in cancer stem cell subpopulations.
View Article and Find Full Text PDFAn overwhelming majority of the transcribed genome encodes for non-coding RNA (ncRNA) sequences. Deep sequencing of the transcriptome has uncovered tens of thousands of long ncRNA (lncRNA) sequences. However, little is known regarding the possible functions for a vast majority of these sequences.
View Article and Find Full Text PDFPreviously, we found that basal-like ductal carcinoma in situ (DCIS) contains cancer stem-like cells. Here, we characterize stem-like subpopulations in a model of basal-like DCIS and identify subpopulations of CD49f+/CD24- stem-like cells that possess aldehyde dehydrogenase 1 activity. We found that these cells show enhanced migration potential compared with non-stem DCIS cells.
View Article and Find Full Text PDFBackground: Krüppel-like Factor 2 (KLF2) plays an important role in vessel maturation during embryonic development. In adult mice, KLF2 regulates expression of the tight junction protein occludin, which may allow KLF2 to maintain vascular integrity. Adult tamoxifen-inducible Krüppel-like Factor 4 (KLF4) knockout mice have thickened arterial intima following vascular injury.
View Article and Find Full Text PDFSeveral reports have indicated that miR-140, a possible tumor suppressor microRNA (miR), is down-regulated in breast tumors compared with normal breast tissues. However, the role of miR-140 in breast tumorigenesis is unclear. We initiated studies that examined estrogen receptor α (ERα) signaling in the tissue-specific regulation of miR-140 in breast cancer.
View Article and Find Full Text PDFNF-E2-related factor 2 (Nrf2) is an important transcription factor that activates the expression of cellular detoxifying enzymes. Nrf2 expression is largely regulated through the association of Nrf2 with Kelch-like ECH-associated protein 1 (Keap1), which results in cytoplasmic Nrf2 degradation. Conversely, little is known concerning the regulation of Keap1 expression.
View Article and Find Full Text PDFBreast Cancer Res Treat
October 2011
NF-E2-related factor 2 (Nrf2) is an important transcription factor involved in antioxidant response. Nrf2 binds antioxidant response elements (ARE) within promoters of genes encoding detoxification enzymes (e.g.
View Article and Find Full Text PDFEvidence supports a critical role for microRNAs (miRNAs) in regulation of tissue-specific differentiation and development. Signifying a disruption of these programs, expression profiling has revealed extensive miRNA dysregulation in tumors compared with healthy tissue. The miR-200 family has been established as a key regulator of epithelial phenotype and, as such, is deeply involved in epithelial to mesenchymal transition (EMT) processes in breast cancer.
View Article and Find Full Text PDF