Proc Natl Acad Sci U S A
November 2024
Tough soft materials such as multiple network elastomers (MNE) or filled elastomers are typically stretchable and include significant energy dissipation mechanisms that prevent or delay crack growth. Yet most studies and fracture models focus on steady-state propagation and damage is assumed to be decoupled from the local stress and strain fields near the crack tip. We report an in situ spatial-temporally resolved 3D measurement of molecular damage in mechanophore-labeled MNE just before a crack propagates.
View Article and Find Full Text PDFTissue engineering and regenerative medicine are confronted with a persistent challenge: the urgent demand for robust, load-bearing, and biocompatible scaffolds that can effectively endure substantial deformation. Given that inadequate mechanical performance is typically rooted in structural deficiencies─specifically, the absence of energy dissipation mechanisms and network uniformity─a crucial step toward solving this problem is generating synthetic approaches that enable exquisite control over network architecture. This work systematically explores structure-property relationships in poly(ethylene glycol)-based hydrogels constructed utilizing thiol-yne chemistry.
View Article and Find Full Text PDFNitrile rubber (, NBR) is a crosslinked copolymer of butadiene and acrylonitrile that finds widespread use in the automotive and aerospace industry as it sustains large, reversible deformations while resisting swelling by petrochemical fuels. We recently demonstrated that this material has a drift in composition due to the difference in reactivity between acrylonitrile and butadiene monomers during emulsion copolymerisation. Thus, although NBR is often thought of as a random copolymer, it does experience thermodynamic driving forces for self-assembly and kinetic barriers for processing like those of block copolymers.
View Article and Find Full Text PDFPressure-sensitive-adhesives (PSAs) are ubiquitous in electronic, automobile, packaging, and biomedical applications due to their ability to stick to numerous surfaces without undergoing chemical reactions. Although these materials date back to the 1850s with the development of surgical tapes based on natural rubber, their resistance to shear loads remains challenging to predict from molecular design. This work investigates the role of crosslink density on the shear resistance of model PSAs based on poly(2-ethylhexyl acrylate--acrylic acid) physically crosslinked with aluminum acetylacetonate.
View Article and Find Full Text PDFAn organized combination of stiff and elastic domains within a single material can synergistically tailor bulk mechanical properties. However, synthetic methods to achieve such sophisticated architectures remain elusive. We report a rapid, facile, and environmentally benign method to pattern strong and stiff semicrystalline phases within soft and elastic matrices using stereo-controlled ring-opening metathesis polymerization of an industrial monomer, -cyclooctene.
View Article and Find Full Text PDFAlthough elastomers often experience 10 to 100 million cycles before failure, there is now a limited understanding of their resistance to fatigue crack propagation. We tagged soft and tough double-network elastomers with mechanofluorescent probes and quantified damage by sacrificial bond scission after crack propagation under cyclic and monotonic loading. Damage along fracture surfaces and its spatial localization depend on the elastomer design, as well as on the applied load (i.
View Article and Find Full Text PDFElastomers saturated with gas at high pressure suffer from cavity nucleation, inflation, and deflation upon rapid or explosive decompression. Although this process often results in undetectable changes in appearance, it causes internal damage, hampers functionality (e.g.
View Article and Find Full Text PDFThe role of ion placement was systematically investigated in imidazolium bis(trifluoromethane)sulfonimide (ImTFSI) polymerized ionic liquids (PILs) containing pendant charges and charges in the backbone (sometimes called ionenes). The backbone PILs were synthesized via a facile step growth route, and pendant PILs were synthesized via RAFT. Both PILs were designed to have nearly identical charge density, and the conductivity was found to be substantially enhanced in the backbone PIL systems even after accounting for differences in the glass transition temperature ().
View Article and Find Full Text PDFThe effects of protein surface potential on the self-assembly of protein-polymer block copolymers are investigated in globular proteins with controlled shape through two approaches: comparison of self-assembly of mCherry-poly(N-isopropylacrylamide) (PNIPAM) bioconjugates with structurally homologous enhanced green fluorescent protein (EGFP)-PNIPAM bioconjugates, and mutants of mCherry with altered electrostatic patchiness. Despite large changes in amino acid sequence, the temperature-concentration phase diagrams of EGFP-PNIPAM and mCherry-PNIPAM conjugates have similar phase transition concentrations. Both materials form identical phases at two different coil fractions below the PNIPAM thermal transition temperature and in the bulk.
View Article and Find Full Text PDF